. 24/7 Space News .
Volcanoes Light Up Atmospheres of Small Exoplanets
by Elizabeth Howell for Astrobiology Magazine
Moffett Field CA (SPX) Feb 16, 2016

Newly discovered planet GJ 1132b, a super-Venus very close to its parent star, could be a candidate to look for volcanic eruptions. Image courtesy Dana Berry.

Geologic activity on a planet is believed to be very important for life, but it can be hard to spot its signs from far away - especially on smaller, rocky planets akin to Earth.

What if there was a large volcanic eruption on such an Earth-like planet - could we spot that? A group of graduate students at the University of Washington's astrobiology program considered this question after it arose during a class discussion about the search for life outside our solar system.

"All life needs energy," said doctoral student Joshua Krissansen-Totton. "At first we thought about plate tectonics. It's not necessary for life, but looking into it, we thought it might be a good indicator of places that are habitable. But it's very hard to spot that, so we looked more closely at volcanism."

The resulting article, "Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism," was published in the journal Astrobiology in June. The work was funded by the NASA Astrobiology Institute's Virtual Planetary Laboratory.

Subtracting light
A common way of spotting Earth-sized planets is through the transit method. A telescope, such as NASA's Kepler space telescope, monitors a star for a long time looking for a planet to pass in front of it. Spotting small planets is easiest when they orbit dwarf stars because of the smaller ratio between the star's radius and the planet's radius. A larger star has enough light to easily obscure the tiny transit. However, spotting these small planets in this way says nothing necessarily about their atmospheres.

The scenario is arguably easier with very large planets. A spectrometer picks up the spectrum of light coming from the direction of a star and astronomers can look for a change in light signature when a planet passes in front to deduce the chemical composition of the planet's atmosphere. The first such measurements were done in 2002 using gas giant HD 209458 (Charbonneau et al., 2002).

Our current technology doesn't allow us to do this with an Earth-sized planet at exoplanet distances, but Krissansen-Totton and his collaborators came up with another solution. When a volcano erupts, it tends to puff out the atmosphere as sulfur leaves the volcano and creates sulfate aerosols in the upper atmosphere through interactions with other molecules. Perhaps it's possible to see an atmosphere expanding and then contracting again on a small planet, even from a fairly large distance.

Pinatubo and Sarychev
In this paper, the researchers considered two scenarios. The first was looking at a volcanic eruption about the size of the 1991 Pinatubo eruption. This particular eruption was the second-largest in the 20th Century, following a 1912 eruption in Alaska. They also considered a more common volcanic scenario, such as the relatively small 2009 Sarychev eruption in Russia that caused some disruptions to flights due to an ash cloud.

The researchers tried simulating the capabilities of two forthcoming observatories: NASA's James Webb Space Telescope (to launch in 2018) and the ground-based European Extremely Large Telescope (E-ELT) in Chile, scheduled to light up in 2024.

When the researchers created a model using these scenarios, they discovered that a Sarychev eruption would be very hard to spot on an Earth-sized planet orbiting a Sun-like star about 10 parsecs (32 light-years) away. The larger Pinatubo eruption, however, did create a rapid increase and gradual decrease in the planet's radius that could more easily be spotted with the telescopes.

Recent planetary find
This is all the more exciting, Krissansen-Totton added, with the recent discovery of GJ 1132b. This planet is slightly larger than Earth and hovers so close as to orbit its parent star in a mere 38 hours, making it a real scorcher in terms of temperature. The planet also happens to be relatively near to Earth - just 12 parsecs (39 light-years) away. Krissansen-Totton said there would be limitations in understanding such a planet's atmospheric composition.

"There's a good chance it'll have a thick Venus-like atmosphere," he said. "On Venus, nothing is visible below 90 kilometers because of its cloud layers; explosive eruptions on a Venus-like exoplanet would be obscured by cloud."

Volcanoes are a fairly common feature in the Solar System. In icy form, we have seen eruptions on Saturn's moon Enceladus. There also is evidence of volcanic eruptions (whether in the past or present) in locations such as Venus and even Pluto, the latter of which was seen close-up for the first time this year by NASA's New Horizons spacecraft.

"Many people think hydrothermal settings are crucial in the origin of life," Krissansen-Totton said. "So we're more interested in seeing planets with volcanic activity."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Astrobiology Magazine
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Earth-like planets have Earth-like interiors
Boston MA (SPX) Feb 09, 2016
Every school kid learns the basic structure of the Earth: a thin outer crust, a thick mantle, and a Mars-sized core. But is this structure universal? Will rocky exoplanets orbiting other stars have the same three layers? New research suggests that the answer is yes - they will have interiors very similar to Earth. "We wanted to see how Earth-like these rocky planets are. It turns out they ... read more

Aldrin recounts successes and challenges of historic space journey

Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Becoming a Martian

Site of Martian lakes linked to ancient habitable environment

Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

Flowering Zinnias set stage for deep-space food crop research

Orion Crew Module processing begins for first mission

Practical Advice for Aspiring Space Explorers

Are private launches changing the rocket equation?

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Spaceflight Awarded First GSA Schedule Contract for Satellite Launch Services

SES-9 Launch Targeting Late February

ULA Launches NROL-45 Payload for the National Reconnaissance Office

SpaceX to carry military payloads as US phases out Russian rocket engines

Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Body temperature triggers newly developed polymer to change shape

Making sense of metallic glass

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules

Engineering researchers use laser to 'weld' neurons

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.