Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
On the road to spin-orbitronics
by Staff Writers
Berkeley CA (SPX) Apr 15, 2015


These schematics of magnetic domain walls in perpendicularly magnetized thin films show (a) left-handed and (b) right-handed Neel-type walls; and (c) left-handed and (d) right-handed Bloch-type walls. The directions of the arrows correspond to the magnetization direction. Image courtesy Berkeley Lab. For a larger version of this image please go here.

Few among us may know what magnetic domains are but we make use of them daily when we email files, post images, or download music or video to our personal devices. Now a team of researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has found a new way of manipulating the walls that define these magnetic domains and the results could one day revolutionize the electronics industry.

Gong Chen and Andreas Schmid, experts in electron microscopy with Berkeley Lab's Materials Sciences Division, led the discovery of a technique by which the so-called "spin textures" of magnetic domain walls in ultrathin magnets can be switched between left-handed, right-handed, cycloidal, helical and mixed structures.

Given that the "handedness" or chirality of spin texture determines the movement of a magnetic domain wall in response to an electric current, this technique, which involves the strategic application of uniaxial strain, should lend itself to the creation of domains walls designed for desired electronic memory and logic functions.

"The information sloshing around today's Internet is essentially a cacophony of magnetic domain walls being pushed around within the magnetic films of memory devices," says Schmid.

"Writing and reading information today involves mechanical processes that limit reliability and speed. Our findings pave the way to use the spin-orbit forces that act upon electrons in a current to propel magnetic domain walls either in the same direction as the current, or in the opposite direction, or even sideways, opening up a rich new smorgasbord of possibilities in the field of spin-orbitronics."

The study was carried out at at the National Center for Electron Microscopy (NCEM), which is part of the Molecular Foundry, a DOE Office of Science User Facility. The results have been reported in a Nature Communications paper titled "Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain." Chen and Schmid are the corresponding authors. Other co-authors are Alpha N'Diaye, Sang Pyo Kang, Hee Young Kwon, Changyeon Won, Yizheng Wu and Z.Q. Qiu.

In addition to carrying a negative electrical charge, electrons also carry a quantum mechanical property known as "spin," which arises from tiny magnetic fields created by their rotational momentum. For the sake of simplicity, spin is assigned a direction of either "up" or "down." Because of these two properties, a flow of electrons creates both charge and spin currents.

Charge currents are well understood and serve as the basis for today's electronic devices. Spin currents are just beginning to be explored as the basis for the emerging new field of spintronics. Coupling the flows of charge and spin currents together opens the door to yet another new field in electronics called "spin-orbitronics." The promise of spin-orbitronics is smaller, faster and far more energy efficient devices through solid-state magnetic memory.

The key to coupling charge and spin currents lies within magnetic domains, regions in a magnetic material in which all of the spins of the electrons are aligned with one another and point in the same direction - up or down.

In a magnetic material containing multiple magnetic domains, individual domains are separated from one another by narrow zones or "walls" that feature rapidly changing spin directions. There are two types of magnetic domain walls known to exist in magnetic thin films: Bloch, in which electron spin rotates like a helical spiral around an axis; and Neel, in which electron spin rotates like a cycloidal spiral. Both types of walls can have either right-handed or left-handed chirality.

Applying a technique called "SPLEEM," for Spin-Polarized Low Energy Electron Microscopy, to a thin-film of iron/nickel bilayers on tungsten, Chen and Schmid and their collaborators were able to stabilize domain walls that were a mixture of Bloch and Neel types. They also showed how the chirality of domain walls can be switched between left-and right-handedness. This was accomplished by controlling uniaxial strain on the thin films in the presence of an asymmetric magnetic exchange interaction between neighbouring electron spins.

"Depending on their handedness, Neel-type walls are propelled with or against the current direction, while Bloch-type walls are propelled to the left or to the right across the current," Chen says. "Our findings introduce Bloch-type chirality as a new spin texture and might allow us to tailor the spin structure of chiral domain walls. This would present new opportunities to design spin-orbitronic devices."

A key to the success of Chen, Schmid and their colleagues was their SPLEEM imaging technique, which in this country could only be carried out at the Molecular Foundry's NCEM.

"Magnetization is a 3D vector, not just a scalar property and in order to see spin textures, the three Cartesian components of the magnetization must be resolved," Schmid says. "Berkeley Lab's SPLEEM instrument is one of a mere handful of instruments worldwide that permit imaging all three Cartesian components of magnetization. It was the unique SPLEEM experimental capability that made this spin-orbitronics research possible."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Computers that mimic the function of the brain
Chicago IL (SPX) Apr 10, 2015
Researchers are always searching for improved technologies, but the most efficient computer possible already exists. It can learn and adapt without needing to be programmed or updated. It has nearly limitless memory, is difficult to crash, and works at extremely fast speeds. It's not a Mac or a PC; it's the human brain. And scientists around the world want to mimic its abilities. Both acad ... read more


CHIP TECH
Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

Extent of Moon's giant volcanic eruption is revealed

CHIP TECH
Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars

Scars on Mars from 2012 Rover Landing Fade - Usually

Bill Nye and others discussing taking humans to Mars by 2033

CHIP TECH
How To Train Your Astronauts

Air Scrubber Plus Brings Space Age Technology Down To Earth

NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

CHIP TECH
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

CHIP TECH
Special 3-D delivery from space to Marshall Space Flight Center

NASA drives future discoveries with new ISS information system

Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

CHIP TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

THOR 7 encapsulation as next Ariane 5 campaigns proceeds

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

CHIP TECH
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

CHIP TECH
Largest database of elastic properties accelerates material science

Raytheon expands radar production facility

Upgrade in works for Norway's counter-battery radar

Physicists create new molecule with record-setting dipole moment




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.