. 24/7 Space News .
NANO TECH
On the rebound as nanoparticles self-heal
by Staff Writers
Lemont IL (SPX) Feb 02, 2018

In a newly discovered twist, Argonne scientists and collaborators found that palladium nanoparticles can repair atomic dislocations in their crystal structure. This self-healing behavior is worth exploring in other materials.

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also "self-heal" after experiencing intense strain, once that strain is removed.

New research from the U.S. Department of Energy's (DOE) Argonne National Laboratory and Stanford University has found that palladium nanoparticles can repair atomic dislocations in their crystal structure. This newly discovered twist could ultimately advance the quest to introduce self-healing behaviors in other materials.

"It turns out that these nanoparticles function much more like the human body healing from an injury than like a broken machine that can't fix itself." - Andrew Ulvestad, Argonne materials scientist.

The research follows a study from last year, in which Argonne researchers looked at the sponge-like way that palladium nanoparticles absorb hydrogen.

When palladium particles absorb hydrogen, their spongy surfaces swell. However, the interiors of the palladium particles remain less flexible. As the process continues, something eventually cracks in a particle's crystal structure, dislocating one or more atoms.

"One would never expect the dislocation to come out under normal conditions," said Argonne materials scientist Andrew Ulvestad, the lead author of the study.

"But it turns out that these nanoparticles function much more like the human body healing from an injury than like a broken machine that can't fix itself."

Ulvestad explained that the dislocations form as a way for the material to relieve the stress placed on its atoms by the infusion of additional hydrogen. When scientists remove the hydrogen from the nanoparticle, the dislocations have room to mend.

Using the X-rays provided by Argonne's Advanced Photon Source, a DOE Office of Science User Facility, Ulvestad was able to track the motion of the dislocations before and after the healing process. To do so, he used a technique called Bragg coherent diffraction imaging, which identifies a dislocation by the ripple effects it produces in the rest of the particle's crystal lattice.

In some particles, the stress of the hydrogen absorption introduced multiple dislocations. But even particles that dislocated in multiple places could heal to the point where they were almost pristine.

"In some cases, we saw five to eight original dislocations, and some of those were deep in the particle," Ulvestad said.

"After the particle healed, there would be maybe one or two close to the surface."

Although Ulvestad said that researchers are still unsure exactly how the material heals, it likely involves the relationship between the material's surface and its interior, he explained.

By better understanding how the material heals, Ulvestad and his colleagues hope to tailor the dislocations to improve material properties.

"Dislocations aren't necessarily bad, but we want to control how they form and how they can be removed," he said.

The study, entitled "The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles," appeared November 9 in Nature Communications.


Related Links
Argonne National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Touchy nanotubes work better when clean
Houston TX (SPX) Feb 01, 2018
Carbon nanotubes bound for electronics need to be as clean as possible to maximize their utility in next-generation nanoscale devices, and scientists at Rice and Swansea universities have found a way to remove contaminants from the nanotubes. Rice chemist Andrew Barron, also a professor at Swansea in the United Kingdom, and his team have figured out how to get nanotubes clean and in the process discovered why the electrical properties of nanotubes have historically been so difficult to measure. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Amazon opens plant-filled "The Spheres" buildings

NASA-JAXA Joint Statement on Space Exploration

Space station spacewalk postponed until mid-February

Microbes may help astronauts transform human waste into food

NANO TECH
Falcon Heavy rocket ready for fueling, static fire test

SpaceX CEO Sets Date for First Falcon Heavy Rocket Launch

Rocket Lab successfully circularizes orbit with new Electron kick stage

Ariane 5 delivers SES-14 and Al Yah 3 to orbit

NANO TECH
NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

Opportunity prepares software update as Sol 5000 approaches

NASA's Next Mars Lander Spreads its Solar Wings

NANO TECH
China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

China to select astronauts for its space station

NANO TECH
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

NANO TECH
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Updates on recovery attempts for NASA IMAGE mission

NANO TECH
First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

NASA Poised to Topple a Planet-Finding Barrier

NANO TECH
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.