Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



EARLY EARTH
Human cells, hardy microbes share common ancestor
by Staff Writers
Fort Collins CO (SPX) Nov 10, 2017


Top: Two views of eukaryotic chromatin structure. Bottom: Two views of archaeal chromatin structure. Research published in Science has unveiled structural similarities between archaeal and eukaryotic histone-based chromatin.

To Tom Santangelo, single-celled microorganisms called archaea are like ancient mariners, surviving among the most extreme conditions on Earth, including volcanic vents in the deep ocean.

The Colorado State University researcher studies how these hardy microbes - which constitute one of three surviving domains of life - express their genes, produce their energy, and thrive in hot, lightless environments.

It turns out, we're not so different - biochemically, anyway - from archaea after all.

Santangelo, associate professor in the Department of Biochemistry and Molecular Biology, was on a team that found striking parallels between how archaeal cells and more complex cells, including humans' and animals', package and store their genetic material. The breakthrough study, published in Science earlier this year, provided evidence that archaea and eukaryotic cells share a common mechanism to compact, organize and structure their genomes.

The study was led by Karolin Luger, now a structural biologist at the University of Colorado Boulder. Most of the results reported in Science were completed while Luger was a CSU faculty member, from 1999 to 2015.

A little high school biology review: Eukaryotes are cells with a nucleus and membrane-bound organelles, and they include fungal, plant and animal - including human - cells. They're set apart from their less complex counterparts, prokaryotes, by the absence of a nucleus. While archaea and bacteria are both prokaryotes, they are only distantly related. Archaea are the likely progenitors of eukaryotes and share many of the same proteins that control gene expression.

One of life's most fundamental processes - the mechanics by which DNA bends, folds and crams itself into a cell nucleus - is common across all eukaryotes, from microscopic protists to plants to humans.

Packed inside the nucleus of every eukaryotic cell is several feet of genetic material that is compacted in a very specific way. Small sections of DNA are wrapped, like thread around a spool, roughly two times around eight small proteins called histones. This entire DNA-histone complex is called a nucleosome, and a string of compacted nucleosomes is called chromatin. In 1997, Luger and colleagues first reported the exact structure of eukaryotic nucleosomes via X-ray crystallography.

Science paper collaborator John Reeve had discovered in the 1990s that histone proteins were not limited to eukaryotes, but were also found in nucleus-free archaea cells. Reeve and Luger began a collaboration to crystallize histone-based archaeal chromatin and compare that structure with eukaryotic chromatin.

After years of stops and starts and trouble growing reliable archaeal histone crystals - Luger called it a "gnarly crystallographic problem" - the scientists succeeded in resolving the structure of archaeal chromatin, revealing its structural similarity to eukaryotes.

In the data, the archaeal DNA seemed to form long, curvy, repeating superhelices. The researchers weren't sure if the structure was real, or an artifact of the experiment. That's where Santagelo's team at CSU provided key expertise.

"My group took up the challenge of determining whether the structure resolved in the crystals represented a biologically meaningful structure," he said.

Santangelo's team made variants of the archaeal histones and tested how the cells fared, as they disrupted the DNA superhelix. They found that the more they destabilized the structure, the sicker the cells got. Their efforts underscored the merits of the structure Luger's group had determined.

Being part of a team that provided so fundamental an insight as the ancestry of our cells was among the most rewarding moments of Santangelo's career.

"The major impact of the paper, I think, is that the idea of compacting DNA into those structures is a very ancient idea - probably more than 1 billion years old," Santangelo said. "Histone proteins came on the scene, and once they got into and started packaging genomes, they largely made themselves indispensable to those cells that encoded them."

Research paper

EARLY EARTH
Mammals switched to daytime activity after dinosaur extinction
London, UK (SPX) Nov 08, 2017
Mammals only started being active in the daytime after non-avian dinosaurs were wiped out about 66 million years ago (mya), finds a new study led by UCL and Tel Aviv University's Steinhardt Museum of Natural History. A long-standing theory holds that the common ancestor to all mammals was nocturnal, but the new discovery reveals when mammals started living in the daytime for the first time ... read more

Related Links
Colorado State University
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
NASA Moves Up Critical Crew Safety Launch Abort Test

Brazil's tech junkies seek healing at digital detox clinic

NanoRacks launches Full External Cygnus Deployer on OA-8 to ISS

The road to Orion's launch

EARLY EARTH
The state of commercial spaceports in 2017

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Orbital ATK launches eighth cargo mission to space

Vega launches Earth observation satellite for Morocco

EARLY EARTH
How long can microorganisms live on Mars

NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

EARLY EARTH
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

EARLY EARTH
Astronaut meets volcano

European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

EARLY EARTH
Plasma from lasers can shed light on cosmic rays, solar eruptions

Leonardo tapped by British Royal Air Force for radar testing equipment

A new way to mix oil and water

Building better silk

EARLY EARTH
Astronomers See Moving Shadows Around Planet-Forming Star

Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

EARLY EARTH
Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement