Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Nonphotosynthetic pigments could be biosignatures of life on other worlds
by Staff Writers
Seattle WA (SPX) Jun 25, 2015


Laguna Colorada is a shallow salt lake in the southwest of Bolivia. One of several places on Earth whose colors are affected by nonphotosynthetic pigments. UW doctoral student Eddie Schwieterman has published research on how such nonphotosynthetic biosignatures might appear on exoplanets, or those outside our solar system. Image courtesy Noemi Galera.

To find life in the universe, it helps to know what it might look like. If there are organisms on other planets that do not rely wholly on photosynthesis - as some on Earth do not - how might those worlds appear from light-years away?

That's among the questions University of Washington doctoral student Edward Schwieterman and astronomer Victoria Meadows of the UW-based, interdisciplinary Virtual Planetary Laboratory sought to answer in research published in May in the journal Astrobiology.

Using computer simulations, the researchers found that if organisms with nonphotosynthetic pigments - those that process light for tasks other than energy production - cover enough of a distant planet's surface, their spectral signal could be strong enough to be detected by powerful future telescopes now being designed. The knowledge could add a new perspective to the hunt for life beyond Earth.

Such organisms 'will produce reflectance, or brightness, signatures different than those of land vegetation like trees,' said lead author Schwieterman. 'This could push us to broaden our conception of what surface biosignatures might look like' on an exoplanet, or world beyond our solar system.

He said the research grew from a meeting with co-author Charles Cockell of the UK Centre for Astrobiology in 2012. Schwieterman sought a topic for a research rotation in the UW Astrobiology program in which students do work outside their main field of study.

'I was interested in doing biology in the lab and linking it to remotely detectable biosignatures, which are indications there is life on a planet based on observations that could be made from a space-based telescope or large ground-based telescope,' Schwieterman said.

There had already been literature about looking for something akin to Earth's vegetation 'red edge' as a possible biosignature on exoplanets, he said. The red edge - caused by oxygen-producing organisms such as trees - is the increase in brightness when you move from the visible wavelength range to the infrared, or light too red to see. It's why foliage looks bright in infrared photography and is often used to map vegetation cover by Earth-observing satellites.

Schwieterman and Cockell, a University of Edinburgh astrobiologist, decided to look further, and measure the reflectance of earthly organisms with different kinds of pigments. They included those that do not rely on photosynthesis to see what biosignatures they produce and how those might differ from photosynthetic organisms - or indeed from nonliving surface features like rocks and minerals.

Pigments that absorb light are helpful to earthly organisms in ways other than just producing energy. Some protect against the sun's radiation or have antioxidants to help the organism survive extreme environments such as salt concentrations, high temperatures or acidity. There are even photosynthetic pigments that do not produce oxygen at all.

Schwieterman and Meadows then plugged their results Virtual Planetary Laboratory spectral models - which include the effects of the atmosphere and clouds - to simulate hypothetical planets with surfaces covered to varying degrees with such organisms.

'With those models we could determine the potential detectability of those signatures,' he said.

Exoplanets are much too far away to observe in any detail; even near-future telescopes will deliver light from such distant targets condensed to a single pixel. So even a strong signal of nonphotosynthetic pigments would be seen at best only in the 'disk average,' or average planetary brightness in the electromagnetic spectrum, Schwieterman said.

'This broader perspective might allow us to pick up on something we might have missed or offer an additional piece of evidence, in conjunction with a gaseous biosignature like oxygen, for example, that a planet is inhabited,' Schwieterman said.

The UW-based planetary lab has a growing database of spectra and pigments of nonphotosynthetic organisms and more that is available to the public, and to which data from this project have been added.

Schwieterman said much work remains to catalogue the range of spectral features that life on Earth produces and also to quantify how much of a planetary surface could conceivably be covered with pigmented organisms of any type.

'We also need to think about what kinds of adaptations might exist on other worlds that don't exist on Earth - and what that means for the interaction of those possible extraterrestrial organisms with their light environments.'


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Washington
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
Atmospheric signs of volcanic activity could aid search for life
Seattle WA (SPX) Jun 09, 2015
Planets with volcanic activity are considered better candidates for life than worlds without such heated internal goings-on. Now, graduate students at the University of Washington have found a way to detect volcanic activity in the atmospheres of exoplanets, or those outside our solar system, when they transit, or pass in front of their host stars. Their findings, published in the June iss ... read more


EXO LIFE
Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

EXO LIFE
Scientists find methane in Mars meteorites

NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

EXO LIFE
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

EXO LIFE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

EXO LIFE
Curtiss-Wright Awarded Contract By The European Space Agency

Russia's Vostochny Cosmodrome Receives First Telemetry From ISS

Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

EXO LIFE
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

EXO LIFE
The mass of the Mars-sized exoplanet, Kepler-138b

Astronomers create array of Earth-like planet models

Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

EXO LIFE
Oculus out to let people touch virtual worlds

Speeding Up Synthetic Chemistry

Framework materials yield to pressure

Squid inspires camouflaging smart materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.