Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ENERGY TECH
Next-Gen batteries could provide power to microsatellites, cubesats
by Linda Herridge for KSC News
Kennedy Space Center FL (SPX) Feb 14, 2017


Daniel Perez, Ph.D., a graduate student from the University of Miami, displays a piece of the prototype structure for a new solid-state battery in the Prototype Laboratory at Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate. Image courtesy NASA/Dimitri Gerondidakis. For a larger version of this image please go here.

Sometimes good things come in very small packages. Just ask Dr. Luke Roberson, senior principal investigator for Flight Research within the Exploration Research and Technology Directorate at NASA's Kennedy Space Center in Florida.

Dr. Roberson is collaborating on research of a new solid-state battery prototype with Dr. Ryan Karkkainen, a composite material expert at the University of Miami. The chemistry and structure for the battery was developed by Xiangyang Zhou, Ph.D., associate professor of mechanical and aerospace engineering, also at the university. Three students from the university currently are working on the prototype with Roberson.

"Creating a structural battery material could revolutionize the way NASA operates small payloads. Rather than placing a battery in the experiment taking up 20 to 35 percent of the available volume, the battery now resides in the payload structure, thereby opening up additional free space for researchers to perform more science," Roberson said.

The size of the battery is so thin (2-3 millimeters) that it is a prime candidate for use in microsatellites, including CubeSats. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

Space is key in a CubeSat, which is usually no bigger than a large toaster. They hitch rides as secondary payloads with larger payloads on rocket launches. This new battery's size would occupy about one-third of the area of batteries currently used to power the miniature satellites, thus allowing more space for the compact science payload.

Daniel Perez, a Ph.D. student in mechanical engineering from the University of Miami supporting this project, visited Kennedy to learn how to make the structural pieces for the battery prototype.

In an area of the Prototype Lab, Perez secured several layers of the small carbon fiber squares on top of each other in a vacuum bag. He attached a vacuum hose to the bag to draw out all of the air from the carbon fiber and compress all of the fibers together, a process called debulking. After about an hour, the squares were carefully uncovered and moved to a 250-degree oven where the resin epoxy in the carbon fiber was cured.

Perez will produce several more layers in the same way. These will serve as the layers that provide the structure for the battery. Back in Miami, two other students are working with Dr. Zhou on a prototype of the solid-state structural battery layers that will be placed between the layers of compressed carbon fiber squares.

"It is a great experience to learn about fabricating composites from NASA professionals at Kennedy Space Center," Perez said. "With the knowledge I gain here, I will be able to apply it to structural battery research to increase the mechanical performance of this technology."

Roberson said composite reinforcement and mechanical/electrical testing will be performed at Kennedy in the near future.

Could this new type of battery transfer to other applications? Roberson thinks so.

"This technology could be used on satellite structural trusses, the International Space Station, or to power habitat structures established on another planet," said Roberson. "Commercial applications could include automobile frames or tabletop battery rechargers."

Power grid fluctuations are a concern for everyone. Roberson said if this type of battery could be added to current homes or buildings or included in the walls during construction, they would be an added or alternate source of power. With the proper structure elements, the batteries can be made to be impact and moisture resistant, and flame retardant.

"We have a great team working on this project, and I hope this technology will become a safe and efficient method to store energy while replacing electrically inert structural components in a wide variety of applications," Perez said. "We're all working hard for this technology to improve our spaceflight systems and contribute to the advancement of this industry."


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
NASA's Space Technology Mission Directorate.
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
New, long-lasting flow battery could run for more than a decade with minimum upkeep
Boston MA (SPX) Feb 10, 2017
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new flow battery that stores energy in organic molecules dissolved in neutral pH water. This new chemistry allows for a non-toxic, non-corrosive battery with an exceptionally long lifetime and offers the potential to significantly decrease the costs of production. The research, p ... read more


ENERGY TECH
Endurance athletes: Swig mouthwash for improved performance

Looking to the future: Russia, US mull post-ISS cooperation in space

Progress Underway for First Commercial Airlock on Space Station

A new recruit for ESA's astronaut corps

ENERGY TECH
Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

India puts record 104 satellites into orbit

SpaceX Falcon 9 rocket vertical at Florida's Kennedy Space Center

India to launch record 104 satellites next week

ENERGY TECH
ISRO saves its Mars mission spacecraft from eclipse

Mars Reconnaissance Orbiter plays crucial role in search for landing sites

Angling up for Mars science

Swirling spirals at the north pole of Mars

ENERGY TECH
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

ENERGY TECH
NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

Why it's time for Australia to launch its own space agency

Government announces boost for UK commercial space sector

ENERGY TECH
NASA and MIT collaborate to develop space-based quantum-dot spectrometer

NASA's TDRS-M space communications satellite begins final testing

Lasers could give space research its broadband moment

Terahertz chips a new way of seeing through matter

ENERGY TECH
Possibility of Silicon-Based Life Grows

NASA finds planets of red dwarf stars may face oxygen loss in habitable zones

Dwarf star 200 light years away contains life's building blocks

Santa Fe Institute researchers look for life's lower limits

ENERGY TECH
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement