. 24/7 Space News .
STELLAR CHEMISTRY
New technology offers to broaden vision for radio astronomy
by Staff Writers
Charlottesville, VA (SPX) May 01, 2018

The 19-element phased array feed developed by the NRAO CDL.

To accelerate the pace of discovery and exploration of the cosmos, a multi-institution team of astronomers and engineers has developed a new and improved version of an unconventional radio-astronomy imaging system known as a Phased Array Feed (PAF). This remarkable instrument can survey vast swaths of the sky and generate multiple views of astronomical objects with unparalleled efficiency.

Looking nothing like a camera or other traditional imaging technologies - like CCDs in optical telescopes or single receivers in radio telescopes - this new Phased Array Feed design resembles a forest of miniature tree-like antennas evenly arranged on a meter-wide metal plate. When mounted on a single-dish radio telescope, specialized computers and signal processors are able to combine the signals among the antennas to create a virtual multi-pixel camera.

This type of instrument is particularly useful in a number of important areas of astronomical research, including the study of hydrogen gas raining in on our galaxy and in searches for enigmatic Fast Radio Bursts.

Over the years, various other radio astronomy research facilities have developed phased array receiver designs. Most, however, have not achieved the efficiency necessary to compete with classical radio receiver designs, which process one signal from one spot on the sky at a time. The value of the new PAF is that it can form multiple views (or "beams on the sky," in radio astronomy terms) with the same efficiency as a classical receiver, which can enable faster scans of multiple astronomical targets.

This newly developed system helps take Phased Array Feed technology from a curious area of research to a highly efficient, multipurpose tool for exploring the universe.

Commissioning observations with the National Science Foundation's Green Bank Telescope (GBT) using this new design show that this instrument met and exceeded all testing goals.

It also achieved the lowest operating noise temperature - a normally vexing problem for clear views of the sky - of any phased array receiver to date. This milestone is critical to move the technology from an experimental design to a fully fledged observing instrument.

The results are published in the Astronomical Journal.

"When looking at all phased array receiver technologies currently operating or in development, our new design clearly raises the bar and gives the astronomy community a new, more rapid way of conducting large-scale surveys," said Anish Roshi, an astronomer-engineer with the National Radio Astronomy Observatory (NRAO) and a member of the design team.

The new PAF was designed by a consortium of institutions: the NRAO's Central Development Laboratory, Green Bank Observatory, and Brigham Young University.

"The collaborative work that went into designing, building, and ultimately verifying this remarkable system is truly astounding," said NRAO Director Tony Beasley. "It highlights the fact that new and emerging radio astronomy technology can have an immense impact on research."

The new PAF design consists of 19 dipole antennas, radio receivers that resemble miniature umbrellas without a covering. A dipole, which simply means "two poles," is the most basic type of antenna.

Its length determines the frequency - or wavelength of radio light - it is able to receive. In the PAF radio system, the strength of the signal can vary across the surface of the array. By calculating how the signal is received by each of the antennas, the system produces what is known as a "point-spread function" - essentially, a pattern of dots concentrated in one region.

The PAF's computer and signal processors can calculate up to seven point-spread functions at a time, enabling the receiver to synthesize seven individual beams on the sky. The new design also allows these regions to overlap, creating a more comprehensive view of the region of space being surveyed.

"This project brings together in one instrument a state-of-the-art, low-noise receiver design, next generation multi-channel digital radio technology, and advanced phased array modeling and beamforming," said Bill Shillue, PAF group lead at the NRAO's Central Development Laboratory.

The astronomical value of the receiver was demonstrated by GBT observations of the pulsar B0329+54 and the Rosette Nebula, a star-forming region of the Milky Way filled with ionized hydrogen gas.

Additional development and computing power could enable this same design to generated an even greater number of beams on the sky, greatly expanding its utility.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

This research is presented in a paper titled "Performance of a highly sensitive, 19-element, dual-polarization, cryogenic L-band phased array feed on the Green Bank Telescope," by D.A. Roshi, et al., which appears in the Astronomical Journal.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Webb Telescope could detect the first stars and black holes
Greenbelt MD (SPX) Apr 26, 2018
The first stars in the universe blazed to life about 200 to 400 million years after the big bang. Observing those very first individual stars across such vast distances of space normally would be a feat beyond any space science telescope. However, new theoretical work suggests that under the right circumstances, and with a little luck, NASA's upcoming James Webb Space Telescope will be able to capture light from single stars within that first generation of stars. "Looking for the first stars ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Rescue Operations Take Shape for Commercial Crew Program Astronauts

Russia develops space sauna and washing machine

One detector doesn't 'fit all' for smoke in spacecraft

'Jedi' calls on Europe to find innovation force

STELLAR CHEMISTRY
China developing reusable space rocket

NASA Science to Return to Earth aboard SpaceX Dragon Spacecraft

Meet the nuclear-powered spaceships of the future

Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

STELLAR CHEMISTRY
Bernese Mars camera CaSSIS sends first colour images from Mars

A Yellowstone guide to life on Mars

ESA and NASA to investigate bringing martian soil to Earth

Results of Mars 2020 heat shield testing

STELLAR CHEMISTRY
Astronauts eye more cooperation on China's space station

China to launch advanced space cargo transport aircraft in 2019

China unveils underwater astronaut training suit

China's Chang'e-4 relay satellite named "Queqiao"

STELLAR CHEMISTRY
UK may set up satellite program separate from EU

ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

STELLAR CHEMISTRY
New terahertz semiconductor laser enables record-high output

Scientists identify unique binding mechanism of antifreeze molecule

Dellingr baselined for CubeSat mission to Van Allen Belts

India recalls GSAT-11 satellite from launch site for more tests

STELLAR CHEMISTRY
Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

Researchers simulate conditions inside 'super-Earths'

Droids beat astronomers in predicting survivability of exoplanets

STELLAR CHEMISTRY
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.