. 24/7 Space News .
ENERGY TECH
New synthesis method developed at UEF opens up new possibilities for Li-ion batteries
by Staff Writers
Joensuu, Finland (SPX) Feb 22, 2016


Doped lithium titanate (LTO) nanoparticles could be incorporated into Li-ion batteries used in, for example, electric or hybrid automotive applications. Image courtesy Tommi Karhunen. For a larger version of this image please go here.

Lithium-ion batteries are a rapidly growing energy storage method due to their high energy density, especially in mobile applications such as personal electronics and electric cars.

However, the materials currently used in Li-ion batteries are expensive, many of them, like lithium cobalt oxide (belonging to the EU Critical Raw Materials, CRMs), are difficult to handle and dispose of. Additionally, batteries using these materials have relatively short lifetimes.

New novel materials are being developed for next generation Li-ion batteries. One promising anode-cathode material pair is lithium titanate countered by lithium iron phosphate. The raw materials for these components are readily available; and they are safe to use, and easy to dispose of or recycle.

And most importantly, batteries manufactured using these materials have significantly longer cycle and calendar lifetimes compared to the current battery technology. However, the main problem of these new materials is their low electric conductivity.

A study by University of Eastern Finland scientists opens up new electricity storage applications. The results were published recently in the Journal of Alloys and Compounds, which has a large audience especially in Asian countries, where most of the Li-ion battery manufacturing takes place currently.

"The electric conductivity problem can be solved by producing nanosized, high surface area crystalline materials, or by modifying the material composition with highly conductive dopants.

"We have succeeded in doing both for lithium titanate (LTO) in a simple, one-step gas phase process developed here at the UEF Fine Particle and Aerosol Technology Laboratory," says Researcher Tommi Karhunen.

"The electrochemical performance of Li-ion batteries made out of the above mentioned material is very promising. The electrochemical properties were studied in collaboration with Professor Ulla Lassi's group from Kokkola University Consortium Chydenius.

The most important applications lie in batteries featuring, for example, fast charging required for electric buses, or high power needed for hybrid and electric vehicles," says Professor Jorma Jokiniemi, Director of the Fine Particle and Aerosol Technology Laboratory.

Karhunen T, Valikangas J, Torvela T, Lahde A, Lassi U, Jokiniemi J. Effect of doping and crystallite size on the electrochemical performance of Li4Ti5O12. Journal of Alloys and Compounds (2016) 659:1342. DOI: 10.1016/j.jallcom.2015.10.125


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Eastern Finland
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Electric-car battery materials could harm key soil bacteria
Washington DC (SPX) Feb 12, 2016
The growing popularity of battery-powered cars could help reduce greenhouse gas emissions, but they are not entirely Earth friendly. Problems can creep in when these batteries are disposed of. Scientists, in a new study in ACS' journal Chemistry of Materials, are reporting that compounds increasingly used in lithium-ion batteries are toxic to a type of soil-dwelling bacteria that plays an import ... read more


ENERGY TECH
Aldrin recounts successes and challenges of historic space journey

Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

ENERGY TECH
Somewhere between Earth and Mars Science Fiction Became Science Fact

Becoming a Martian

Site of Martian lakes linked to ancient habitable environment

Opportunity climbing steeper slopes to reach science targets

ENERGY TECH
Visions of the future unleashed at TED

Flowering Zinnias set stage for deep-space food crop research

Practical Advice for Aspiring Space Explorers

Are private launches changing the rocket equation?

ENERGY TECH
China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

ENERGY TECH
Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

ENERGY TECH
JAXA Launches X-ray Astronomy Satellite

ULA Launches NROL-45 Payload for the National Reconnaissance Office

SES-9 Launch Targeting Late February

Spaceflight Awarded First GSA Schedule Contract for Satellite Launch Services

ENERGY TECH
Volcanoes Light Up Atmospheres of Small Exoplanets

Planet formation around binary star

Proto-planet has 2 masters

Earth-like planets have Earth-like interiors

ENERGY TECH
Scientists prove feasibility of 'printing' replacement tissue

Light used to measure the 'big stretch' in spider silk proteins

Not your grandfather's house, but maybe it should be

Shaping crystals with the flow









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.