. 24/7 Space News .
TECH SPACE
New mechanisms discovered to separate air
by Staff Writers
Matsumoto, Japan (SPX) Jun 11, 2018

This is functional group flapping mechanism in a small nanowindow which can be in an open or closed status for allowing O2 permeation.

Unlike the windows of your house, nanoscale holes in graphene (named as "nanowindows") can selectively choose which type of air molecules can pass through.

Scientists from Shinshu University and PSL University, France, theoretically proved concerted motion of the nanowindow-rim to selectively allow molecules to pass, in an energy-efficiently and fast way. This brings up new possibilities to create an advanced molecular separation membrane technology.

The mechanism of separation by nanowindows is that the atomic vibration of the nanowindow-rim changes the effective nanowidow size. When the rim of one side is deviated and the other is deviated to the opposite direction, the effective nanowindow size becomes larger than when the rim does not move. This effect is very predominant for molecules of oxygen, nitrogen, and argon, inducing an efficient separation of oxygen from air.

The study considered separation of the main components of air: oxygen, nitrogen and argon. They have high industrial needs; innovative air separation technology has been highly demanded.

The molecular sizes of oxygen, nitrogen, and argon are 0.299, 0.305, and 0.363 nanometers (nm). The researchers compare the permeation of these molecules on 6 differently-sized nanowindows (of 0.257 nm, 0.273 nm, 0.297 nm, 0.330 nm, 0.370 nm, and 0.378 nm).

Nanowindows were prepared by oxidation treatment. Thus their rims are passivated with hydrogen and oxygen atoms, which have essential role for selective permeation.

Surprisingly, the molecules permeate through nanowindows even when the rigid nanowindow size is smaller than the target molecular size. For example, O2 permeates faster through 0.29nm nanowindows than 0.33nm nanowindows.

The difference in permeation rate is associated with the interaction of the molecule with the nanowidow rim and graphene. The mechanism is explained using interaction energy and vibrational motion of the oxygen and hydrogen at the nanowindow rim.

In the nanoscale, the local electric filed coming from the nanowindow rim having hydrogen and oxygen atoms is large enough to determine the orientation of oxygen and nitrogen molecules, giving a highly selective permeation through nanowindows smaller than oxygen molecules.

This selectivity sensitively depends on the structure and property of a gas molecule and the geometry (size and shape) and rim-chemistry of nanowindows.

The concerted orientational motions of the hydrogen and oxygen atoms at the nanowindow rim caused by thermal vibrations change the effective size of the window approximately 0.01 nm. The concerted vibration at the nanowindow rim can open the nanowindow for preferable molecules (oxygen gas in this case).

This study evaluated mixed gas permeation to measure selectivities. Separation efficiencies exceeded 50 and 1500 for O2/N2 and O2/Ar at room temperature, respectively. The current membranes have obtained permeation rate selectivities 6 for O2/N2 but at the same time they lack high permeation rate. This shows promising possibility of the dynamic nanowindows in the graphene.

Air separation in current industry uses distillation, which consumes large amount of energy. Gases used in this study are widely employed in various industries such as medical, food, steal, etc. Development of the dynamic nanowindows-embedded graphenes will save large amount of energy and provide safer and high efficient process. This study shows the future direction of air separation.

Research paper


Related Links
Shinshu University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Engineers convert commonly discarded material into high-performance adhesive
Newark DE (SPX) Jun 07, 2018
Whether you're wrapping a gift or bandaging a wound, you rely on an adhesive to get the job done. These sticky substances often are made from petroleum-derived materials, but what if there was a more sustainable way to make them? Now, a team of engineers at the University of Delaware has developed a novel process to make tape out of a major component of trees and plants called lignin--a substance that paper manufacturers typically throw away. What's more, their invention performs just as well as a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New Era of Space Exploration is "Internet of Tomorrow"

New crew blasts off for ISS

New crew blasts off for ISS

NASA Narrows Scope for Proposed Astrophysics Missions

TECH SPACE
US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Russian Reusable Space Rocket Tests Scheduled for 2022

Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

TECH SPACE
More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

Science Team Continues to Improve Opportunity's Use of the Robotic Arm

TECH SPACE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TECH SPACE
US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

The European Space Agency welcomes European Commission's proposal on space activities

TECH SPACE
Cooling by laser beam

New 3D printer can create complex biological tissues

Researchers mimic comet moth's silk fibers to make 'air-conditioned' fabric

Soaking up the water and the sweat - a new super desiccant

TECH SPACE
Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Searching for Potential Life-Hosting Planets Beyond Earth

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

TECH SPACE
NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.