Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



INTERNET SPACE
New fluorescent dyes could advance biological imaging
by Staff Writers
Ashburn VA (SPX) Sep 19, 2017


These are novel rhodamine dyes synthesized in the Lavis Lab fluorescing under UV illumination. Image courtesy Jonathan B. Grimm.

With a new technique to craft a spectrum of glowing dyes, chemists are no longer chasing rainbows. Swapping out specific chemical building blocks in fluorescent molecules called rhodamines can generate nearly any color scientists desire - ROYGBIV and beyond, researchers report September 4, 2017 in the journal Nature Methods.

The work offers scientists a way to adjust the properties of existing dyes deliberately, making them bolder, brighter, and more cell-permeable too. Such an expanded palette of dyes could help researchers better illuminate the inner workings of cells, says study leader Luke Lavis, a group leader at the Howard Hughes Medical Institute's Janelia Research Campus in Ashburn, Virginia. His team lit up cell nuclei, made larval fruit fly brains shine, and highlighted visual cortex neurons in mice that had tiny glass windows fitted into their skulls.

Scientists used to concoct different dyes mostly by trial and error, Lavis says. "Now, we've figured out the rules, and we can make almost any color." His team's method could allow chemists to synthesize hundreds of different colors.

A bright history
Until about 20 years ago, scientists relied on chemical fluorescent dyes to make biological molecules visible. For peeking inside cells, staining organelles, and other imaging experiments, "chemistry was king," Lavis wrote in a July 13, 2017 perspective in the journal Biochemistry. And then, the king was kicked off the throne - by a glowing green jellyfish protein called GFP.

In 1994, scientists reported the use of a genetic trick to tack GFP, the green fluorescent protein, onto other cellular proteins; it's like forcing the proteins to hold a glow stick. That trick gave researchers a simpler way to trace proteins' movements under a microscope - without using expensive synthetic dyes.

The innovation blazed through the field of biological imaging. In 2007, scientists' mixing of GFP and two other fluorescent proteins let them paint mouse neurons a parade of vivid colors in a technique known as the "Brainbow." A year later, the discovery and development of GFP earned the Nobel Prize in chemistry for three scientists, including the late Roger Tsien, an HHMI investigator.

But GFP has some dark sides too. It's a relatively clunky molecule built out of the limited set of natural amino acids. So GFP isn't always bright enough to reveal what scientists are trying to see.

So researchers turned back to chemistry. Scientists had developed cutting-edge microscopes and new techniques to label cellular contents, Lavis says, but the dyes for marking molecules inside cells were still stuck in the nineteenth century. His team focused on rhodamines, because they're especially bright and cell-permeable - so they easily slip into cells and make them glow. But despite working with rhodamines for more than 100 years, chemists had created only a few dozen colors, and most were similar shades ranging from green to orange.

Until recently, making new rhodamines wasn't easy. Scientists still used techniques from the earliest days of chemistry, boiling chemical ingredients in sulfuric acid. This forces the molecules to link together in what's called a condensation reaction. Mixing in different building blocks can yield new and unusual dyes. But ingredients had to be tough enough to survive the boiling acid bath - which didn't leave a lot of options.

Make it glow
In 2011, Lavis's team developed a new way to tinker with rhodamines' structure, under milder conditions. Using a reaction sparked by the metal palladium, the researchers could skip the acid step and construct dyes with more complicated building blocks than had been used before.

This kinder, gentler approach opened the door to a wide new world of dyes, and Lavis's team dove in. Four years later, they revealed the Janelia Fluor dyes, fluorescent molecules up to 50 times brighter than other dyes, and more stable too. The secret behind the Janelia Fluor dyes is a tiny square-shaped appendage called an azetidine ring - a structure made possible only by Lavis's new chemistry approach.

Scientists can use a variety of strategies to get the bright dye molecules onto the protein they want to study. Then, they can zero in on the lit-up protein, and watch it wiggle around and interact with other molecules - without the usual background fuzziness.

"For us, it was a total revolution in the field of single-molecule imaging," says molecular biologist Xavier Darzacq of the University of California, Berkeley. Before using the Janelia Fluor dyes, the fluorescent-tagged transcription factor proteins his team studied were too dim to capture in crisp images.

"Researchers had to hold the camera shutter open for 10 milliseconds to collect enough light. That's long enough for proteins to wander, so the image would come out blurry - like a photograph of a squirmy toddler. But the Janelia dyes are bright enough that his team can capture molecules in action in just a millisecond, Darzacq says. Such quick snapshots have allowed his team to do lab experiments he describes as "simply unthinkable a few years ago."

Now, Lavis's group has figured out how to fine-tune their fluorescent dyes, by tweaking rhodamines' structure even further. Rhodamines have a basic four-ringed design with groups of atoms protruding from different parts of the rings. In previous work, the scientists developed strategies for coarse tuning dyes - snip out an entire appendage here, and you can make a green dye.

Pop in a silicon atom there, and you've got red. Lavis discovered that by carefully placing just a few new atoms in the dye structure, the color and chemical properties of the dyes could also be fine-tuned, allowing many shades of green from a single scaffold. It's like going from the classic eight pack of crayons to the jumbo box of 64.

In a separate paper, published August 9, 2017 in the journal ACS Central Science, the team described a way to modify the dye structure's bottom ring.

"The key thing is that it's all modular and rational," Lavis says. Select the right atoms, he explains, and chemists can engineer dyes with nearly any property they want.

His group grafted different chemicals onto rhodamines, and then analyzed the new dyes' properties. "No one had ever looked at rhodamines in this kind of systematic way before," says lead coauthor Jonathan Grimm, a senior scientist at Janelia.

The dyes are synthesized in a single step with inexpensive ingredients, Lavis says. That makes the dyes cheaper than commercial alternatives - pennies per vial. The low cost has allowed his team share their work with scientists around the world. Lavis, Grimm, and colleagues have now shipped thousands of vials to hundreds of different labs.

"These dyes are a complete game-changer," says Ethan Garner, a bacterial cell biologist at Harvard University who has used them to trace the path of single molecules in his lab. The one downside had been that scientists didn't have a lot of different colors to choose from. But now, he says, with Lavis's work, "They can actually cover the whole spectral range."

Jonathan B. Grimm, Anand K. Muthusamy, Yajie Liang, Timothy A. Brown, William C. Lemon, Ronak Patel, Rongwen Lu, John J. Macklin, Philip J. Keller, Na Ji, and Luke D. Lavis, "A general method to fine-tune fluorophores for live-cell and in vivo imaging," Nature Methods. Published online September 4, 2017. doi: 10.1038/nmeth.4403

INTERNET SPACE
New Google Pixel smartphone debut expected October 4
San Francisco (AFP) Sept 14, 2017
Google on Thursday fired off invitations to an October 4 event at which the US tech giant is expected to field a second-generation Pixel as its new champion in the competitive smartphone market. The internet giant behind Android software for powering mobile devices also launched a madebygoogle.com web page that featured a playful animation that asked "Thinking about changing phones?" and the ... read more

Related Links
Howard Hughes Medical Institute
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Voyager Spacecraft: 40 Years of Solar System Discoveries

Trump names former Navy aviator to head NASA

What's hot and what's not at Berlin's IFA tech fair

'Star Trek' actor Shatner sends message to Voyager

INTERNET SPACE
Rocket fever launches UB students to engineering competition in New Mexico

NASA Concludes Summer of Testing with Fifth Flight Controller Hot Fire

ISRO suspects pyro elements failed to separate rocket's heat shield

Ariane 5 rocket aborts Guiana lift-off in final seconds

INTERNET SPACE
Discovery of boron on Mars adds to evidence for habitability

Life on Mars: Let's Try Oman Desert First for Space Mission

Citizen scientists spot Martian 'spiders' in unexpected places

Big dishes band together

INTERNET SPACE
China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

ESA and Chinese astronauts train together

INTERNET SPACE
Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

Lockheed Martin invests $350M in state-of-the-art satellite production facility

INTERNET SPACE
New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures

Chinese video site offers virtual escape from 'boring' reality

Chinese video site offers virtual escape from 'boring' reality

Molecules move faster near sticky surfaces

INTERNET SPACE
Climate change for aliens

X-Rays Reveal Temperament of Possible Planet-Hosting Stars

Earth as Hybrid Planet: The Anthropocene Era in Astrobiological Context

Could TRAPPIST-1's Seven Earth-size Planets Have Gas Giant Siblings

INTERNET SPACE
Pluto features given first official names

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby

Juno Scientists Prepare for Seventh Science Pass of Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement