Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
New flexible material can make any window 'smart'
by Staff Writers
Austin TX (SPX) Aug 23, 2016


This is a darkened electrochromic film on plastic prepared by chemical condensation. Image courtesy Cockrell School of Engineering. For a larger version of this image please go here.

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have invented a new flexible smart window material that, when incorporated into windows, sunroofs, or even curved glass surfaces, will have the ability to control both heat and light from the sun. Their article about the new material will be published in the September issue of Nature Materials.

Delia Milliron, an associate professor in the McKetta Department of Chemical Engineering, and her team's advancement is a new low-temperature process for coating the new smart material on plastic, which makes it easier and cheaper to apply than conventional coatings made directly on the glass itself.

The team demonstrated a flexible electrochromic device, which means a small electric charge (about 4 volts) can lighten or darken the material and control the transmission of heat-producing, near-infrared radiation. Such smart windows are aimed at saving on cooling and heating bills for homes and businesses.

The research team is an international collaboration, including scientists at the European Synchrotron Radiation Facility and CNRS in France, and Ikerbasque in Spain. Researchers at UT Austin's College of Natural Sciences provided key theoretical work.

Milliron and her team's low-temperature process generates a material with a unique nanostructure, which doubles the efficiency of the coloration process compared with a coating produced by a conventional high-temperature process. It can switch between clear and tinted more quickly, using less power.

The new electrochromic material, like its high-temperature processed counterpart, has an amorphous structure, meaning the atoms lack any long-range organization as would be found in a crystal. However, the new process yields a unique local arrangement of the atoms in a linear, chain-like structure.

Whereas conventional amorphous materials produced at high temperature have a denser three-dimensionally bonded structure, the researchers' new linearly structured material, made of chemically condensed niobium oxide, allows ions to flow in and out more freely. As a result, it is twice as energy efficient as the conventionally processed smart window material.

At the heart of the team's study is their rare insight into the atomic-scale structure of the amorphous materials, whose disordered structures are difficult to characterize. Because there are few techniques for characterizing the atomic-scale structure sufficiently enough to understand properties, it has been difficult to engineer amorphous materials to enhance their performance.

"There's relatively little insight into amorphous materials and how their properties are impacted by local structure," Milliron said. "But, we were able to characterize with enough specificity what the local arrangement of the atoms is, so that it sheds light on the differences in properties in a rational way."

Graeme Henkelman, a co-author on the paper and chemistry professor in UT Austin's College of Natural Sciences, explains that determining the atomic structure for amorphous materials is far more difficult than for crystalline materials, which have an ordered structure. In this case, the researchers were able to use a combination of techniques and measurements to determine an atomic structure that is consistent in both experiment and theory.

"Such collaborative efforts that combine complementary techniques are, in my view, the key to the rational design of new materials," Henkelman said.

Milliron believes the knowledge gained here could inspire deliberate engineering of amorphous materials for other applications such as supercapacitors that store and release electrical energy rapidly and efficiently.

The Milliron lab's next challenge is to develop a flexible material using their low-temperature process that meets or exceeds the best performance of electrochromic materials made by conventional high-temperature processing.

"We want to see if we can marry the best performance with this new low-temperature processing strategy," she said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Texas at Austin
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Scientists have created a ceramic, resistant to extreme temperatures
Tomsk, Russia (SPX) Aug 22, 2016
Physicists and technicians of the TSU and Institute of Strength Physics and Materials Science SB RAS are developing experimental samples of ceramics that are resistant to extreme temperatures. The scientists aim to invent a material that can withstand up to 3,000 degrees Celsius. The new product will be used in the space industry and in the manufacture of aircraft engines. Samples of the m ... read more


TECH SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TECH SPACE
Test for damp ground at Mars' seasonal streaks finds none

Fossilized rivers suggest warm, wet ancient Mars

China unveils 2020 Mars rover concept: report

MAVEN Spacecraft Gears Up to Observe Global Dust Storm on Mars

TECH SPACE
Chinese sci-fi prepares to master the universe

China opens longest glass bottom bridge in world

NASA Licenses New Auto-Tracking Mobile Antenna Platform

HERA crew returns paving the way for human research

TECH SPACE
China unveils Mars probe, rover for ambitious 2020 mission

China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

China launches hi-res SAR imaging satellite

China launches world first quantum satellite

TECH SPACE
Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

US astronauts prepare spacewalk to install new docking port

Russia Could Cut Down International Space Station Crew

TECH SPACE
Kourou busy with upcoming Arianespace missions

Ariane 5 is approved for this week's Arianespace launch with two Intelsat payloads

Russian Space Corporation, US Boeing Reach Deal on Dispute Over Sea Launch

Two Intelsat payloads installed on Ariane 5 for next heavy-lift launch

TECH SPACE
A new Goldilocks for habitable planets

Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life

Brown dwarfs reveal exoplanets' secrets

Scientists to unveil new Earth-like planet: report

TECH SPACE
A new generation of cheap networked nuclear-radiation detectors

New flexible material can make any window 'smart'

Unraveling the crystal structure of a -70C Celsius superconductor

UNIST to engineer next-generation smart separator membranes




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement