Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
New evidence in favor of dark matter
by Staff Writers
Santa Cruz de Tenerife, Spain (SPX) Feb 10, 2017


This is barred spiral galaxy NGC 7479 located in the Pegasus constellation about 105 million light years and discovered in 1784 by the German astronomer William Herschel. Its central bar is highlighted and very luminous. Image courtesy Daniel Lopez and IAC.

Why do the majority of astronomers believe in dark matter: matter whose composition is unknown but which seems to make up 80% of the mass of the galaxies? The concept was invented in the 1930's by Fritz Zwicky who used it to explain why the galaxies in the Coma cluster are moving much more quickly than can be explained in terms of their known masses.

The most decisive step was taken in the 1970's by the great Vera Rubin, who showed that the outer parts of galaxies are rotating much more quickly than we can explain using the combined masses of their stars, gas, and dust, and the law of gravity of Newton or Einstein.

Since then astrophysicists have taken it as their standard scenario that galaxies are surrounded by a halo of this dark matter, which dominates their gravitational fields. But nobody has been able to identify what this dark matter is made of, in spite of the best efforts of the particle physicists. This has stimulated the researchers to think up additional tests.

One of these was proposed 20 years ago. The theorists predicted that the halos ought to brake the rotation of the bars in galaxies. If they spin slowly this would be a strong proof of the reality of the halos, but if they spin quickly this would throw doubt on their existence and thus cast doubt on the standard model of modern cosmology.

In spiral galaxies, the stars of the bar usually rotate faster than their arms due to gravitation. Around the galactic nucleus, there is a so-called "corroding circle", equidistant points from the center of the galaxy where the stars of the bar and those of the rest of the disk rotate at the same speed.

All these points form the circle, and the distance between them and the nucleus is the "corotation radius", which scientist could find thanks to observations. Then, they devised a quantitative method to discern the speed of rotation of the bars. If the bar slows down, the point would gradually move outward on the disk.

The prediction stated that if the corotation radius was located at a distance from the galactic center greater than 1.4 times the length of the bar itself, it would be evidence that the bar would have been braked by the halo of dark matter around the galaxy.

It is not easy to measure the corotation radius, but during the past decade a number of measurements had been made, on a few dozen galaxies, and the values measured for the ratio between the corotation radius and the bar length were nearly all less than 1.4. These results shed doubt on the reality of dark matter halos and seemed to threaten the whole idea of dark matter.

Now, however, an article recently published in the Astrophysical Journal by a team of IAC researchers, show that bars in galaxies are rotating much more slowly than had been inferred by previous works.

To do this they first applied a new and precise method, which they themselves have developed, for measuring corotation radii, to over 100 galaxies. They also made new and rigorous measurements of the lengths of the bars, and went on to calculate the ratios. Most of them were indeed smaller than 1.4, but their method allowed them to probe deeper.

They also calculated the ratio of the rotation speed of the bar to the rotation speed of the disc, and found that many of the bars, especially the longest ones, are rotating quite slowly, when using the disc rotation speed as the basic unit. This was puzzling, because these galaxies had ratios quite a bit smaller than 1.4 some of them getting down close to 1.

"So we looked for an explanation" says Joan Font "and the only thing we could come up with was that perhaps the bars were growing longer as well as slowing down, so that the ratio of corotation radius to bar length has not become bigger even though the dark matter halo is slowing them down". Joan, and his co-researcher John Beckman, decided to ask Inmaculada Martinez, a theorist researching at the IAC, to run a set of simulations to see whether this idea would work.

She had already made models of how bars behave as galaxies evolve, and she already knew that bars do tend to grow longer by incorporating more stars from the disc. "When I used a model designed to look carefully at how a dark matter halo affects a bar, I did find that the ratio could get smaller than 1.4 even while the bar was being braked by the halo" states this astrophysicist.

The combination of these models with observations have "rescued" dark matter in galactic halos, since previous simulations seemed to refuse its effect and generating controversy in the field of Astrophysics. "Now", says John Beckman, "we have shown that this is due to inadequate simulations that were considered good. The reality is that the bars that rotate quickly do it rather slowly in practice".

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Instituto de Astrofisica de Canarias
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Work Begins in Palo Alto on NASA's Dark Energy Hunter
Bethesda MD (SPX) Jan 20, 2017
Lockheed Martin is helping NASA begin the hunt for dark energy, a mysterious force powering the universe's accelerating expansion. An instrument assembly the company is developing, if selected by NASA for production, will be the core of the primary scientific instrument aboard the Wide Field Infrared Survey Telescope (WFIRST), whose mission aims to uncover hundreds of millions more galaxies and ... read more


STELLAR CHEMISTRY
A new recruit for ESA's astronaut corps

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

STELLAR CHEMISTRY
Commercial Launch of Proton-M Carrier Rocket Planned For Early April - Roscosmos

India to launch record 104 satellites next week

ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Russia to call tender for 2nd Phase of Vostochny Spaceport construction in Fall

STELLAR CHEMISTRY
UAE Aims to Launch Its First Ever Mars Mission in 2020

Opportunity Takes Advantage of her Location to do a Mini Science Campaign

Swirling spirals at the north pole of Mars

Curiosity rover sharpens paradox of ancient Mars

STELLAR CHEMISTRY
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

STELLAR CHEMISTRY
NASA seeks partnerships with US companies to advance commercial space technologies

An exciting year in space for Intelsat

Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

STELLAR CHEMISTRY
New beam pattern yields more precise radar, ultrasound imaging

Anatomy of a debris incident

Japan's troubled 'space junk' mission fails

New material that contracts when heated holds great industrial potential

STELLAR CHEMISTRY
Santa Fe Institute researchers look for life's lower limits

Dedicated Planet Imager Opens Its Eyes to Other Worlds

New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

STELLAR CHEMISTRY
New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement