Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TIME AND SPACE
New Theory Turns Back Clock on Conditions Behind Universe's Origin
by Staff Writers
Dallas TX (SPX) Jan 26, 2016


New research suggests that oscillating heavy particles generated "clocks" before the big bang. The clocks could help determine what produced the initial conditions that gave rise to the universe. (Image by Yi Wang and Xingang Chen).

In a new study, scientists from The University of Texas at Dallas and their colleagues suggest a novel way for probing the beginning of space and time, potentially revealing secrets about the conditions that gave rise to the universe.

The prevailing model of the birth of the universe is the big bang theory, which describes the rapid expansion of the universe from a highly compressed primordial state. While the big bang is a successful genesis model, it does, however, require special initial conditions.

Determining what produced those initial conditions is a major challenge in cosmology and astrophysics, said Dr. Xingang Chen, assistant professor of physics at UT Dallas and a visiting scholar at the Harvard-Smithsonian Center for Astrophysics.

"Several different scenarios have been proposed for the origin of the big bang and to explain its pre-existing, initial conditions," Chen said.

The leading explanation among theorists is the inflation scenario, which posits that the universe went through an exponential expansion in the first fleeting fraction of a second of its existence. Another scenario suggests that a universe preceded ours and contracted in a "big crunch" before transitioning into our big bang.

In a study appearing in an upcoming issue of the Journal of Cosmology and Astroparticle Physics, Chen and his colleagues, Dr. Mohammad Hossein Namjoo, a postdoctoral researcher at UT Dallas and the Center for Astrophysics, and Dr. Yi Wang of the Hong Kong University of Science and Technology, describe a new theory to determine which scenario is correct.

"Each scenario can have many details in its theoretical models that result in various astrophysical signals that can be observed today," Wang said. "Most of these signals may be shared by the different scenarios, but there are some signals that are unique fingerprints of each scenario. Although these signals are very rare, the latter can be used to distinguish inflation from other scenarios."

Astrophysical observations already have revealed information about the origins of the universe some 13.8 billion years ago, specifically about properties of initial fluctuations that took place in the early universe. For example, researchers have mapped patterns of tiny fluctuations in temperature in the otherwise smooth cosmic microwave background (CMB), which is the heat left over from the explosion of the big bang.

Those tiny, "seed" irregularities became magnified as the universe expanded after the big bang, eventually forming all the large-scale structures we see in the universe today, such as stars and galaxies.

From those fluctuations scientists have learned a lot about the spatial variations of the primordial universe, but they have yet to determine the passage of time, Chen said. The phenomenon he and his colleagues discovered would allow that by putting "time stamps" on the evolutionary history of the primordial universe, shedding light on which scenario - inflation or contraction - produced the big bang's initial conditions.

"The information we currently have is akin to showing an audience many still pictures from a movie stacked on top of each other, but they lack proper time labeling for the correct sequence," Chen said. "As a result, we do not know for sure if the primordial universe was expanding or contracting."

Chen and his group devised a way to put the individual snapshots in order. They realized that heavy particles would be present before the big bang in both scenarios.

"These heavy particles have a simple but important property that can be used to resolve the competing scenarios. They oscillate just like a pendulum. They do so classically due to some kind of 'push,' or quantum-mechanically without having to be pushed initially," Chen said. "We call these heavy particles 'primordial standard clocks'."

The researchers found that in both the inflation and contraction scenarios, the oscillating particles generated time "ticks" on the seed fluctuations that the universe was experiencing at the same time.

"With the help of these time labels, we can turn the stacks of stills into a coherent movie and directly reveal the evolutionary history of the primordial universe," Chen said. "This should allow us to distinguish an inflationary universe from other scenarios, including one that previously contracted."

"The clock signals we are searching for are fine oscillatory structures that would manifest in measurements of the cosmic microwave background," Wang said. "Each primordial universe scenario predicts a unique signal pattern."

Namjoo said that detecting clock signals shouldn't require the design of new experiments. While current data is not accurate enough to spot such small variations, ongoing experiments worldwide are expected to gather extremely precise CMB data.

"Our theoretical proposal makes use of the same precision data that many experiments will be gathering in the next decade or so, but analyzes the data from a different angle to dig out a new type of signal," Namjoo said.

If the oscillations from the heavy particles are strong enough, experiments should find them in the next decade, Chen said. Supporting evidence could also come from other lines of investigation, such as maps of the large-scale structure of the universe, including galaxies and cosmic hydrogen.

The research was supported by UT Dallas, Harvard, the Hong Kong University of Science and Technology and the National Science Foundation a paper appears in an upcoming issue of the Journal of Cosmology and Astroparticle Physics

.


Related Links
University of Texas at Dallas
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
New largest prime number found in Missouri
Warrensburg, Mo. (UPI) Jan 20, 2016
There's a new largest prime number in town, and at 22 million digits, it's bigger than the last by 5 million digits. But no one's feelings are hurt too badly, because the discoverer of the new number also discovered the last one. Also, the discoverer is a computer. The number is 2^74,207,281-1. To get the unabridged version, simply multiply two by itself 74,207,281 times and then ... read more


TIME AND SPACE
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

TIME AND SPACE
Opportunity rock abrasion tool conducts two rock grinds

Opportunity Abrasion Tool Conducts Two Rock Grinds

Curiosity gets a good taste of scooped, sieved sand

Rover uses Rock Abrasion Tool to grind rocks

TIME AND SPACE
Voyager Mission Celebrates 30 Years Since Uranus

Engineers Mark Completion of Orion's Pressure Vessel

2016 Goals Vital to Commercial Crew Success

Space: The here-and-now frontier

TIME AND SPACE
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

TIME AND SPACE
Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

TIME AND SPACE
Roscosmos Approves Delay of Eutelsat 9B Launch Due to Bad Weather

Assembly begins on 2nd Ariane 5 launcher for 2016

Ariane 5 is readied for an Arianespace leading customer Intelsat

EpicNG satellite installed on Ariane 5 for launch

TIME AND SPACE
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

TIME AND SPACE
New insights into the supercritical state of water

It's a 3-D printer, but not as we know it

Microsoft donates cloud computing 'worth $1 bn'

Research reveals mechanism for direct synthesis of hydrogen peroxide




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.