. 24/7 Space News .
TIME AND SPACE
New Super-Accurate Optical Atomic Clocks Pass Critical Test
by Staff Writers
Washington DC (SPX) Apr 12, 2019

Although optical clocks are very accurate, they do tend to experience significant downtimes because of their technical complexity and prototype design. The researchers at NIST used a group of eight hydrogen masers to keep the time when the optical clock wasn't operational. Masers, which are like lasers that operate in the microwave spectral range, can reliably keep time but have limited accuracy.

Researchers have measured an optical clock's ticking with record-breaking accuracy while also showing the clock can be operated with unprecedented consistency. These achievements represent a significant step toward demonstrating that the new generation of optical atomic clocks are accurate and robust enough to be used to redefine the official length of a second, which is currently based on microwave atomic clocks.

"A more accurate definition of a second and a better time-keeping infrastructure would support continuing advances in the timing systems used in a wide range of applications, including communication and navigation systems," said Andrew Ludlow, one of the research team leaders from the National Institute of Standards and Technology (NIST), USA. "It would also provide more precise measurements for exploring physical phenomena that aren't yet fully understood."

The new research is reported in Optica, The Optical Society's journal for high impact research.

"Optical clocks are likely capable of much higher accuracy, probably 10 to 100 times better than what we measured in this work," said Ludlow. "To prove the true accuracy of these clocks without being limited by today's definition of a second will require high-quality comparisons directly between various types of optical clocks."

Why use an optical clock?
Clocks work by counting a reoccurring event with a known frequency, such as the swinging of a pendulum. For traditional atomic clocks the recurrent event is the natural oscillation of the cesium atom, which has a frequency in the microwave region of the electromagnetic spectrum. Since 1967, the International System of Units (SI) has defined a second as the time that elapses during 9,192,631,770 cycles of the microwave signal produced by these oscillations.

Optical atomic clocks use atoms such as ytterbium and strontium that oscillate about 100,000 times higher than microwave frequencies, in the optical, or visible, part of the electromagnetic spectrum. These higher frequencies allow optical clocks to tick faster than microwave atomic clocks, making them more accurate and stable over time.

"The higher frequencies measured by optical clocks generally make it easier to control environmental influences on the atoms," said Tara Fortier, a member of the research team. "This advantage could eventually enable the development of compact optical clock systems that maintain relatively high performance in a wide range of application environments."

Achieving record accuracy
To show that time kept with an optical clock is compatible with today's standard cesium atomic clocks, the researchers converted the frequency of an ytterbium optical atomic clock at NIST to the microwave region and compared it with a collection of measurements from cesium atomic clocks located across the globe.

They achieved frequency measurements of the ytterbium optical clock with an uncertainty of 2.1 X 10-16. This corresponds to losing only about 100 seconds over the age of the universe (14 billion years) and sets a new accuracy record for cesium-referenced measurements of an optical clock.

Although optical clocks are very accurate, they do tend to experience significant downtimes because of their technical complexity and prototype design. The researchers at NIST used a group of eight hydrogen masers to keep the time when the optical clock wasn't operational. Masers, which are like lasers that operate in the microwave spectral range, can reliably keep time but have limited accuracy.

"The stability of the masers - one of the best local time scales in the world - is one reason why we were able to perform such an accurate comparison to cesium," said Tom Parker, a member of the research team. They further reduced the uncertainty by making 79 measurements over 8 months. This is the first time that optical clock measurements have been reported over such a long time period.

To better understand the limits of optical clocks, the researchers plan to compare the ytterbium optical clock used in this study with other types of optical clocks under development at NIST. Eventually, the NIST clocks could be compared with optical clocks in other countries to determine which types of clocks would be best for redefining the SI second.

The researchers point out that redefining the length of a second is still some years away. Even if it does change, applying the new standard would require technology that better connects and transmits signals from optical clocks around the world in a way that maintains stability and the accuracy of the time.

W. F. McGrew, X. Zhang, H. Leopardi, R.J. Fasano, D. Nicolodi, K. Beloy, J. Yao, J. A. Sherman, S. A. Schaffer, J. Savory, R.C. Brown, S. Romisch, C.W. Oates, T.E. Parker, T.M. Fortier, A.D. Ludlow, "Towards the optical second: Verifying optical clocks at the SI limit," Optica, 6, 4, 448-454 (2019).


Related Links
National Institute of Standards and Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
It's spring already? Physics explains why time flies as we age
Durham NC (SPX) Mar 21, 2019
A Duke University researcher has a new explanation for why those endless days of childhood seemed to last so much longer than they do now - physics. According to Adrian Bejan, the J.A. Jones Professor of Mechanical Engineering at Duke, this apparent temporal discrepancy can be blamed on the ever-slowing speed at which images are obtained and processed by the human brain as the body ages. "People are often amazed at how much they remember from days that seemed to last forever in their youth," ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Music for space

NASA astronaut to set record for longest spaceflight by a woman

Asteroids help scientists measure distant stars

Asteroids Help Scientists Measure Diameters of Faraway Stars

TIME AND SPACE
Sea Launch venture may be moved from US to Russia's Far East

SpaceX loses Falcon Heavy rocket center core booster in Atlantic

Arianespace completes deployment of O3b constellation

Europe's institutions consider Ariane 6 and Vega-C

TIME AND SPACE
A small step for China: Mars base for teens opens in desert

ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

TIME AND SPACE
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

TIME AND SPACE
Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

Forging the future

Preserving heritage data at ESA

Spacecraft Repo Operations

TIME AND SPACE
Wonder materials: 2D phosphorene nanoribbons and 2D borophene get a closer look

Industrial 3D printing goes skateboarding

China to complete $545 mn modernisation for Tajik smelter

India's ASAT 'Justified'

TIME AND SPACE
Astronomers discover third planet in the Kepler-47 circumbinary system

Powerful particles and tugging tides may affect extraterrestrial life

Global Challenge Launched to Build Exoplanet Data Solutions

TESS finds its first Earth-sized planet

TIME AND SPACE
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.