Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



SOLAR SCIENCE
New NASA instrument continues measuring solar energy input to Earth
by Kasha Patel for GSFC News
Greenbelt MD (SPX) Nov 30, 2017


TSIS-1 inside the clean room at KSC

We live on a solar-powered planet. As we wake up in the morning, the Sun peeks over the horizon to shed light on us, blanket us with warmth and provide cues to start our day. At the same time, our Sun's energy drives our planet's ocean currents, seasons, weather and climate. Without the Sun, life on Earth would not exist.

For nearly 40 years, NASA has been measuring how much sunshine powers our home planet. This December, NASA is launching an instrument to the International Space Station to continue monitoring the Sun's energy input to the Earth system.

The Total and Spectral solar Irradiance Sensor (TSIS-1) will precisely measure what scientists call "total solar irradiance." These data will give us a better understanding of Earth's primary energy supply and help improve models simulating Earth's climate.

"You can look at the Earth and Sun connection as a simple energy balance. If you have more energy absorbed by the Earth than leaving it, its temperature increases and vice versa," said Peter Pilewskie, TSIS-1 lead scientist at the Laboratory for Atmospheric Physics (LASP) in Boulder, Colorado. Under NASA's direction, LASP is providing and distributing the instrument's measurements to the scientific community. "We're measuring all the radiant energy that is coming to Earth."

But it's not so simple: the Sun's output energy is not constant. Over the course of about 11 years, our Sun cycles from a relatively quiet state to a peak in intense solar activity - like explosions of light and solar material - called a solar maximum.

In subsequent years the Sun returns to a quiet state and the cycle starts over again. The Sun has fewer sunspots - dark areas that are often the source of increased solar activity - and stops producing so many explosions, going through a period called the solar minimum.

Over the course of one solar cycle (one 11-year period), the Sun's emitted energy varies on average at about 0.1 percent. That may not sound like a lot, but the Sun emits a large amount of energy - 1,361 watts per square meter. Even fluctuations at just a tenth of a percent can affect Earth.

In addition to those 11-year changes, entire solar cycles can vary from decade to decade. Scientists have observed unusually quiet magnetic activity from the Sun for the past two decades with previous satellites. During the last prolonged solar minimum in 2008-2009, our Sun was as quiet it has been observed since 1978. Scientists expect the Sun to enter a solar minimum within the next three years, and TSIS-1 will be primed to take measurements of the next minimum.

"We don't know what the next solar cycle is going to bring, but we've had a couple of solar cycles that have been weaker than we've had in quite a while so who knows. It's a pretty exciting time to be studying the Sun," said Dong Wu, the TSIS-1 project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Goddard is responsible for the overall development and operation of TSIS-1 on the International Space Station.

TSIS-1 data are particularly important for helping scientists understand the causes of total solar irradiance fluctuations and how they are connected with the Sun's behavior over decades or centuries. Today, scientists have neither enough data nor the forecasting skill to predict whether total solar irradiance has any long-term trend, said Doug Rabin, deputy project scientist at Goddard. TSIS-1 will continue a data sequence that is vital to answering that question.

These data are also important for understanding Earth's climate through models. Scientists use computer models to interpret changes in the Sun's energy input. If less solar energy is available, scientists can gauge how that will affect Earth's atmosphere, oceans, weather and seasons by using computer simulations.

The input from the Sun is just one of many factors scientists used to model Earth's climate. Earth's climate is also affected by other factors such as greenhouse gases, clouds scattering light and small particles in the atmosphere called aerosols - all of which are taken into account in comprehensive climate models.

TSIS-1 will study the total amount of solar radiation emitted by the Sun using the Total Irradiance Monitor, one of two sensors on the instrument. The second sensor, called the Spectral Irradiance Monitor, will measure how the Sun's energy is distributed over the ultraviolet, visible and infrared regions of light. TSIS-1 spectral irradiance measurements of the Sun's ultraviolet radiation are critical to understanding the ozone layer - Earth's natural sunscreen that protects life from harmful radiation.

"Knowing the Sun's behavior and knowing how Earth's atmosphere responds to the Sun is even more important now because of all the different factors that affect climate change. We need to understand how all of these interact on Earth's system," said Pilewskie.

+ TSIS-1 project website by University of Colorado

SOLAR SCIENCE
All missions on board for NASA heliophysics research
Greenbelt MD (SPX) Nov 30, 2017
Scientists have been studying the near-Earth environment for the better part of a century, but many mysteries - like where the energetic particles that pervade the area originate and become energized - still remain. In a new type of collaborative study, scientists combined data from 16 separate NASA and Los Alamos National Laboratory (LANL) spacecraft to understand how a particle phenomeno ... read more

Related Links
TSIS-1 at Goddard
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Building for a future in space: An interview with Dava Newman and Gui Trotti

Space Farms: 'Mark Watney in The Martian Was Right to Add Poop to the Soil'

New motion sensors major step towards cheaper wearable technology

Does the Outer Space Treaty at 50 need a rethink

SOLAR SCIENCE
ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

Mechanisms are critical to all space vehicles

Russia loses contact with satellite after launch from new spaceport

SOLAR SCIENCE
Earthworms can reproduce in Mars-like soil

Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Scientists developed a new sensor for future missions to the Moon and Mars

SOLAR SCIENCE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

SOLAR SCIENCE
Going green to the Red Planet

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

SOLAR SCIENCE
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

SOLAR SCIENCE
Scientists identify key factors that help microbes thrive in harsh environments

Exoplanet Has Smothering Stratosphere Without Water

Scientists study Earth's earliest life forms in Nevada hot spring

Traces of life on nearest exoplanets may be hidden in equatorial trap

SOLAR SCIENCE
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement