. 24/7 Space News .
ICE WORLD
New Antarctic ice discovery aids future climate predictions
by Staff Writers
London, UK (SPX) Aug 17, 2016


Today researchers observe differences between sea ice changes at both poles. This is largely due to different geography - the Arctic being a frozen sea surrounded by land and the Antarctic being a frozen landmass surrounded by sea. Whilst a rapid sea ice retreat has been recorded in the Arctic in recent decades, sea ice extent around some parts of the Antarctic have grown. Understanding the similarities and differences between hemispheres has been the subject of intense study by the international polar research community.

A team of British climate scientists comparing today's environment with the warm period before the last ice age has discovered a 65% reduction of Antarctic sea ice around 128,000 years ago. The finding is an important contribution towards the challenge of making robust predictions about the Earth's future climate.

Reporting this week in the journal Nature Communications scientists describe how by reconstructing the Earth's climate history through analysis of Antarctic ice cores they can determine what environmental conditions were like during ice ages and past warm periods. This study focussed on sea ice conditions during the most recent warm period - known as the last interglacial - when global temperatures were similar to today.

Sea ice in the Arctic and around Antarctica regulates climate as, in summer vast areas of whiteness reflect heat from the sun back into the atmosphere, whilst in winter, sea ice prevents heat from escaping from the warm ocean to the air. Current climate models forecast a reduction in Antarctic sea ice of up to about 60% by the end of the next century. Finding a 65% reduction in the climate record during a time when global climate conditions were similar to the present day is especially relevant.

The research team from British Antarctic Survey (BAS) and from the Universities of Bristol, Reading, Leeds and Cambridge studied data from ice cores drilled on the East Antarctic Ice Sheet. A climate model was then used in the analysis of these data. The ice core data and climate model simulations were combined using advanced statistical techniques to determine the state of Antarctic sea ice 128,000 years ago.

Lead author Max Holloway of British Antarctic Survey explains, "We know that the Earth's climate is changing and that climate models predict a warmer world. What we are not yet sure about is the precise magnitude of future change or the timeline. This is where looking into the past can help. We used a number of analytical techniques to quantify change in sea ice extent around Antarctica during this important past warm period.

"We were expecting to see a relationship between warm temperatures around 128,000 years ago and a past collapse of the West Antarctic Ice Sheet. Surprisingly, we found that a major retreat of Antarctic sea ice is a more likely explanation. Our analysis suggests that a collapse of the West Antarctic Ice Sheet occurred later during the last interglacial. Something that our team will be looking at in more detail through another collaborative UK-US project."

Today researchers observe differences between sea ice changes at both poles. This is largely due to different geography - the Arctic being a frozen sea surrounded by land and the Antarctic being a frozen landmass surrounded by sea. Whilst a rapid sea ice retreat has been recorded in the Arctic in recent decades, sea ice extent around some parts of the Antarctic have grown. Understanding the similarities and differences between hemispheres has been the subject of intense study by the international polar research community.

Research group leader, Dr Louise Sime, of BAS, said: "The current rapid retreat of sea ice in the Arctic Sea is of critical importance to Arctic ecosystems and global climate. By uncovering, for the first time, a huge retreat around Antarctica we have established that sea ice in the Southern Hemisphere is also susceptible to major climate changes. This discovery will help us understand whether similar sea ice retreat events are likely in a future high-CO2 world.

"Although Arctic sea ice has diminished during the past 30 years, little change has been observed around Antarctica. This discovery in the ice core record of a massive loss of sea ice provides evidence that Antarctic sea ice can also undergo similar major reductions. This may give vital clues to what might happen by the end of the next century."

Research paper: Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse by Max D. Holloway, Louise C. Sime, Joy S. Singarayer, Julia C. Tindall, Pete Bunch and Paul J. Valdes is published this week in Nature Communications. DOI: 10.1038/ncomms12293


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
British Antarctic Survey
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Antarctic sea ice may be a source of mercury in southern ocean fish and birds
Melbourne, Australia (SPX) Aug 04, 2016
New research has found methylmercury - a potent neurotoxin - in sea ice in the Southern Ocean. Published in the journal Nature Microbiology, the results are the first to show that sea-ice bacteria can change mercury into methylmercury, a more toxic form that can contaminate the marine environment, including fish and birds. If ingested, methylmercury can travel to the brain, causing develop ... read more


ICE WORLD
Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

US company gets historic nod to send lander to moon

China's Jade Rabbit lunar rover dies in blaze of online glory

ICE WORLD
Mineral Veins on Mars Were Formed by Evaporating Ancient Lakes

Evidence of Martian life could be hard to find in some meteorite blast sites

Curiosity Has Disproved 'Old Idea of Mars as a Simple Basaltic Planet'

Rover Game Released for Curiosity's 4th Anniversary on Mars

ICE WORLD
Autonomous interplanetary travel one step closer to reality

After Deadly Crash, Virgin Galactic to Fly Its Spaceplane Once More

Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

ICE WORLD
China launches first mobile telecom satellite

China prepares for new round of manned space missions

China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

ICE WORLD
JSC pursues collection of new technologies for ISS

Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

ICE WORLD
Russia to Launch Angara-1.2 Rocket With Korean Satellite KOMPSAT-6 in 2020

NASA Orders Second SpaceX Crew Mission to International Space Station

Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

ICE WORLD
Astronomers catalogs most likely 'second-Earth' candidates

Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

ICE WORLD
Scientists invent new type of 'acoustic prism'

New algorithm for optimized stability of planar-rod objects

De-icing agent remains stable at more than a million atmospheres of pressure

Living Structural Materials Could Open New Horizons for Engineers and Architects









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.