Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nanoscale worms provide new route to nano-necklace structures
by Staff Writers
Atlanta GA (SPX) Apr 02, 2015


This schematic shows the synthesis of organic-inorganic shish kebab-like nanohybrids composed of periodic nanodisk-like kebabs. Image courtesy Zhiqun Lin. For a larger version of this image please go here.

Researchers have developed a novel technique for crafting nanometer-scale necklaces based on tiny star-like structures threaded onto a polymeric backbone. The technique could provide a new way to produce hybrid organic-inorganic shish kebab structures from semiconducting, magnetic, ferroelectric and other materials that may afford useful nanoscale properties.

The researchers have so far made nano-necklaces with up to 55 nanodisks. The template-based process grows amphiphilic worm-like diblock copolymers through a living polymerization technique in which the polymeric structures serve as nanoreactors that form laterally connecting nanocrystalline structures based on a variety of precursor materials. The nanodisks average about ten nanometers in diameter and four nanometers in thickness, and are about two nanometers apart.

"Our goal was to develop an unconventional, yet robust, strategy for making a large variety of organic-inorganic hybrid shish kebabs," said Zhiqun Lin, a professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "This is a general technique for making these unusual structures. Now that we have demonstrated it, we believe there is a nearly endless list of materials we can use to craft these nano-necklaces."

The research was supported by the Air Force Office of Scientific Research and the National Science Foundation. The results were scheduled to be published on March 27 in the journal Science Advances, published by the American Association for the Advancement of Science (AAAS).

The one-dimensional nano-necklaces could have optical, electronic, optoelectronic, sensing and magnetic applications. The researchers have so far produced structures from cadmium selenide (CdSe), barium titanate (BaTiO3) and iron oxide (Fe3O4), but believe many other materials - including gold - could also be used.

The technique begins with formation of inclusion complexes made of alpha-cyclodextrins, cyclic oligosaccharides composed of six glucose units. The alpha-cyclodextrins, which are hollow in the center, thread themselves onto a polyethylene glycol (PEG) chain in an established self-assembly process. The polymer backbone on which the alpha-cyclodextrins are threaded is capped by a larger stoppering agent to retain the tiny structures.

Each alpha-cyclodextrin has 18 hydroxyl (OH) groups that can be converted into bromine (Br) groups through an esterification process. Diblock polymer "nanoworm" structures are then grown from these bromine groups in solution. Formed from poly(acrylic acid)-block polystyrene (PAA-b-PS), the worm-like diblock copolymers are made up of inner poly(acrylic acid) (PAA) blocks that are hydrophilic, and outer polystyrene (PS) blocks that are hydrophobic. Because so many diblocks grow on each alpha-cyclodextrin, their crowding stretches the polymer backbone.

Finally, metallic ion precursors are preferentially incorporated into the space occupied by inner PAA blocks of worm-like diblock copolymer nanoreactors, forming crystals. These crystals connect the once separate structures, creating the nano-necklaces - which resemble tiny centipedes.

"We were surprised to see these nano-kebabs grown into a single inorganic structure using the worm-like diblock copolymers as nanoreactors," said Lin. "Under transmission electron microscope imaging, you see nanodisk-like kebab structures periodically situated on the stretched polymer shish."

Transmission electron microscope images clearly show the nanodisk-like kebabs because they are made up of materials with high electron densities. However, the connecting PEG shish doesn't show up because it is a single chain and its electron density is much less.

Formation of the structures was initially surprising to Lin's research group, which expected to produce structures resembling nanorods or nanowires. But simulations done by team member Yuci Xu at Ningbo University in China confirmed formation of the structures they were observing experimentally. The simulations also allowed prediction of the structural dimensions that would be produced.

"Based on the simulation, we could understand the growth mechanism for this nano-necklace-like structure," said Lin. "This nano-necklace arrangement is very much captured by the simulation. The simulation and experiments agree well, which increased our confidence that we understand the structures."

With their growth technique demonstrated, the researchers now want to characterize the tiny structures and establish potential applications. Though these have not yet been studied, Lin believes the structures, which are based on semiconducting materials, could, for instance, have electronic applications, with electrons tunneling through adjacent nanodisks.

"The significance of this approach is that there is no limitation on what materials you can make, and no limitation on the size and shape of the structures you can design," he said. "There are many potentially advantageous characteristics that may be derived from this nanoreactor approach."

Other techniques exist to form nano-necklace structures, but none uses a similar template and nanoreactor approach, Lin said.

In future work, Lin's group plans to examine the properties of the structures they've built, test other potential materials, and examine applications that may be appropriate. While the properties of individual nanodisks have been studied before, their collective interactions may provide some potentially unique properties.

"This paper represents an intriguing demonstration of forming hybrid organic-inorganic shish kebabs at the nanometer scale," said Lin. "We are anxious to learn more about the unique properties that they may have, and explore potential applications."

In addition to those already mentioned, the authors included Haiping Xia of Xiamen University in China, and Hui Xu, Xinchang Pang, Yanjie He and Jaehan Jung of Georgia Tech.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
UW scientists build a nanolaser using a single atomic sheet
Seattle WA (SPX) Mar 30, 2015
University of Washington scientists have built a new nanometer-sized laser - using the thinnest semiconductor available today - that is energy efficient, easy to build and compatible with existing electronics. Lasers play essential roles in countless technologies, from medical therapies to metal cutters to electronic gadgets. But to meet modern needs in computation, communications, imaging ... read more


NANO TECH
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

NANO TECH
Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA's Opportunity Mars Rover Passes Marathon Distance

NASA Reformats Memory of Longest-Running Mars Rover

NANO TECH
Feud on Earth but peace in space for US and Russia

Russia Plans to Boost Space Tourism at Orbital Outpost

50 years ago today, space welcomed its first sandwich

Small Staff has Big Impact Showing How NASA Can Engage Students

NANO TECH
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

NANO TECH
One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

NANO TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

NANO TECH
Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

NANO TECH
Engineers speed up simulations in computational grand challenge

Molecule from trees could make our roads and roofs greener

Desalination using a nanoporous graphene membrane

New transitory form of silica observed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.