Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Engineers speed up simulations in computational grand challenge
by Staff Writers
San Diego CA (SPX) Mar 31, 2015


Complex systems such as flows of fluids and plasmas generally evolve as a result of a combination of physical effects, such as diffusion and convection. Some of these effects are linear and incorporate many spatial derivatives (that is, they are characterized by a large range of characteristic time scales, and are thus referred to as "stiff").

Engineers at the University of California, San Diego, have developed a new family of methods to significantly increase the speed of time-resolved numerical simulations in computational grand challenge problems. Such problems often arise from the high-resolution approximation of the partial differential equations governing complex flows of fluids or plasmas.

The breakthrough could be applied to simulations that include millions or billions of variables, including turbulence simulations.

Modern computers are generally built from commodity hardware developed for serving and surfing the web. When applied to cutting-edge problems in scientific computing, computers built from such general-purpose hardware usually spend most of their time moving data around in memory, and the hardware dedicated to floating point computations (that is, the actual addition and multiplication of numbers) spends most of its time idle.

The small memory footprint of the new schemes developed at UC San Diego means that numerical problems of a given size will run much faster on a given computer, and that even larger numerical problems may be considered.

"Moving information around in memory is the bottleneck in almost all large-scale numerical simulations today," said Thomas Bewley, a mechanical engineering professor who leads the Flow Control Lab at the Jacobs School of Engineering at UC San Diego.

"The remarkable feature of the new family of schemes developed in this work is that they require significantly less memory in the computer for a given size simulation problem than existing high-order methods of the same class, while providing excellent numerical stability, accuracy, and computational efficiency."

Complex systems such as flows of fluids and plasmas generally evolve as a result of a combination of physical effects, such as diffusion and convection. Some of these effects are linear and incorporate many spatial derivatives (that is, they are characterized by a large range of characteristic time scales, and are thus referred to as "stiff").

These terms are best handled with "implicit" methods, which require the solution of many simple simultaneous equations using matrix algebra and iterative solvers. Other effects are nonlinear and incorporate fewer spatial derivatives (that is, they are characterized by a smaller range of characteristic time scales, and are thus referred to as "nonstiff").

These terms are most easily handled with explicit methods, which treat the propagation of each equation independently. If the stiff terms are treated with explicit methods, a severe restriction arises on the timestep, which slows the simulation; if the nonstiff terms are treated with implicit methods, complex and computationally expensive iterative solvers must be used.

The new "implicit/explicit" or IMEX time marching schemes developed at UC San Diego thus marry together two algorithms for time-resolved simulations of the standard "Runge-Kutta" or RK form. The implicit algorithm is applied to the stiff terms of the problem, and the explicit algorithm is applied to the nonstiff terms of the problem.

The two algorithms so joined are each endowed with good numerical properties, such as excellent stability and high accuracy, and, notably, maintain this high accuracy when working together in concert. The compatible pairs of simulation methods so developed are known as IMEXRK schemes.

"Searching for the right combination of the dozens of parameters that make these new IMEXRK algorithms work well was like finding a needle in a haystack, and required a tedious search over a very large parameter space, combined with the delicate codification of various numerical intuition to simplify the search. It took almost one year to complete," said Daniele Cavaglieri, a Ph.D. student and co-author of the paper.

Researchers describe the new methods in the January 2015 issue of the Journal of Computational Physics. Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional OED systems.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - San Diego
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
An explanation for the Fermi-Pasta-Ulam system problem
Troy NY (SPX) Mar 26, 2015
A team of researchers, led by Rensselaer Polytechnic Institute professor Yuri Lvov, has found an elegant explanation for the long-standing Fermi-Pasta-Ulam (FPU) problem, first proposed in 1953, investigated with one of the world's first digital computers, and now considered the foundation of experimental mathematics. The research, published in the Proceedings of the National Academy of Sc ... read more


TECH SPACE
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

TECH SPACE
NASA's Opportunity Mars Rover Passes Marathon Distance

NASA rover completes 11-year Mars marathon

Mars has nitrogen, key to life: NASA

India's frugal Mars mission extended by six months

TECH SPACE
50 years ago today, space welcomed its first sandwich

Small Staff has Big Impact Showing How NASA Can Engage Students

TED Prize winner wishes for archive of human wisdom

The Science Of The Start-Up

TECH SPACE
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

TECH SPACE
One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

DoD Works to Build Competition Into Space Launches

Kosmotras Denies Reports of Suspending Russian-Ukrainian Launches

TECH SPACE
Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

Some habitable exoplanets could experience wildly unpredictable climates

TECH SPACE
Additives to biodegrade plastics don't work

Better debugger

An explanation for the Fermi-Pasta-Ulam system problem

New transitory form of silica observed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.