. 24/7 Space News .
TIME AND SPACE
NICER maps 'light echoes' of new black hole
by Staff Writers
College Park MD (SPX) Jan 10, 2019

The Neil Gehrels Swift Observatory took this image of MAXI J1820+070 on March 11, 2018, using its X-Ray Telescope. Image credit: NASA/Swift

Scientists have charted the environment surrounding a stellar-mass black hole that is 10 times the mass of the Sun using NASA's Neutron star Interior Composition Explorer (NICER) payload aboard the International Space Station. NICER detected X-ray light from the recently discovered black hole, called MAXI J1820+070 (J1820 for short), as it consumed material from a companion star. Waves of X-rays formed 'light echoes' that reflected off the swirling gas near the black hole and revealed changes in the environment's size and shape.

"NICER has allowed us to measure light echoes closer to a stellar-mass black hole than ever before," said Erin Kara, an astrophysicist at the University of Maryland, College Park, and NASA's Goddard Space Flight Center in Greenbelt, Maryland, who presented the findings at the 233rd American Astronomical Society meeting in Seattle.

"Previously, these light echoes off the inner accretion disk were only seen in supermassive black holes, which are millions to billions of solar masses and undergo changes slowly. Stellar black holes like J1820 have much lower masses and evolve much faster, so we can see changes play out on human time scales."

J1820 is located about 10,000 light-years away toward the constellation Leo. The companion star in the system was identified in a survey by ESA's (European Space Agency) Gaia mission, which allowed researchers to estimate its distance.

Astronomers were unaware of the black hole's presence until March 11, 2018, when an outburst was spotted by the Japanese Aerospace and Exploration Agency's Monitor of All-sky X-ray Image (MAXI), also aboard the space station. J1820 went from a totally unknown black hole to one of the brightest sources in the X-ray sky over a few days. NICER moved quickly to capture this dramatic transition and continues to follow the fading tail of the eruption.

"NICER was designed to be sensitive enough to study faint, incredibly dense objects called neutron stars," said Zaven Arzoumanian, the NICER science lead at Goddard and a co-author of the paper. "We're pleased at how useful it's also proven in studying these very X-ray-bright stellar-mass black holes."

A black hole can siphon gas from a nearby companion star into a ring of material called an accretion disk. Gravitational and magnetic forces heat the disk to millions of degrees, making it hot enough to produce X-rays at the inner parts of the disk, near the black hole. Outbursts occur when an instability in the disk causes a flood of gas to move inward, toward the black hole, like an avalanche. The causes of disk instabilities are poorly understood.

Above the disk is the corona, a region of subatomic particles around 1 billion degrees Celsius (1.8 billion degrees Fahrenheit) that glows in higher-energy X-rays. Many mysteries remain about the origin and evolution of the corona. Some theories suggest the structure could represent an early form of the high-speed particle jets these types of systems often emit.

Astrophysicists want to better understand how the inner edge of the accretion disk and the corona above it change in size and shape as a black hole accretes material from its companion star. If they can understand how and why these changes occur in stellar-mass black holes over a period of weeks, scientists could shed light on how supermassive black holes evolve over millions of years and how they affect the galaxies in which they reside.

One method used to chart those changes is called X-ray reverberation mapping, which uses X-ray reflections in much the same way sonar uses sound waves to map undersea terrain. Some X-rays from the corona travel straight toward us, while others light up the disk and reflect back at different energies and angles.

X-ray reverberation mapping of supermassive black holes has shown that the inner edge of the accretion disk is very close to the event horizon, the point of no return. The corona is also compact, lying closer to the black hole rather than over much of the accretion disk.

Previous observations of X-ray echoes from stellar black holes, however, suggested the inner edge of the accretion disk could be quite distant, up to hundreds of times the size of the event horizon. The stellar-mass J1820, however, behaved more like its supermassive cousins.

As they examined NICER's observations of J1820, Kara's team saw a decrease in the delay, or lag time, between the initial flare of X-rays coming directly from the corona and the flare's echo off the disk, indicating that the X-rays traveled shorter and shorter distances before they were reflected.

From 10,000 light-years away, they estimated that the corona contracted vertically from roughly 100 to 10 miles - that's like seeing something the size of a blueberry shrink to something the size of a poppy seed at the distance of Pluto.

"This is the first time that we've seen this kind of evidence that it's the corona shrinking during this particular phase of outburst evolution," said co-author Jack Steiner, an astrophysicist at the Massachusetts Institute of Technology's Kavli Institute for Astrophysics and Space Research in Cambridge.

"The corona is still pretty mysterious, and we still have a loose understanding of what it is. But we now have evidence that the thing that's evolving in the system is the structure of the corona itself."

To confirm the decreased lag time was due to a change in the corona and not the disk, the researchers used a signal called the iron K line created when X-rays from the corona collide with iron atoms in the disk, causing them to fluoresce.

Time runs slower in stronger gravitational fields and at higher velocities, as stated in Einstein's theory of relativity. When the iron atoms closest to the black hole are bombarded by light from the core of the corona, the X-ray wavelengths they emit get stretched because time is moving slower for them than for the observer (in this case, NICER).

Kara's team discovered that J1820's stretched iron K line remained constant, which means the inner edge of the disk remained close to the black hole - similar to a supermassive black hole. If the decreased lag time was caused by the inner edge of the disk moving even further inward, then the iron K line would have stretched even more.

These observations give scientists new insights into how material funnels in to the black hole and how energy is released in this process.

"NICER's observations of J1820 have taught us something new about stellar-mass black holes and about how we might use them as analogs for studying supermassive black holes and their effects on galaxy formation," said co-author Philip Uttley, an astrophysicist at the University of Amsterdam.

"We've seen four similar events in NICER's first year, and it's remarkable. It feels like we're on the edge of a huge breakthrough in X-ray astronomy."

Research paper


Related Links
Neutron star Interior Composition Explorer (NICER)
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
UA student simulates thousands of black holes to test Einstein
Tucson AZ (SPX) Jan 08, 2019
Lia Medeiros, a doctoral student at the University of Arizona, is developing mathematical models that will allow researchers to pit Einstein's general theory of relativity against the most powerful monsters of nature: supermassive black holes such as Sgr A*, which lurks at the center of the Milky Way. Medeiros has developed a diagnostic tool that astronomers can use to compare upcoming observations of supermassive black holes by the Event Horizon Telescope to the predictions of mathematical models ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
London retains tech start-up crown: study

Shutdown keeps US experts away from scientific conferences

45 OG Det 3 prepares for human spaceflight return

US gadget love forecast to grow despite trust issues

TIME AND SPACE
Small-satellite launch service revenues to pass $69B by 2030

The high cost of space missions

Difficulties in Planned Soyuz Launches Preparation to Emerge in 2020 - Source

ISRO planning to 32 space missions in 2019

TIME AND SPACE
UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

Over Six Months Without Word From Opportunity

TIME AND SPACE
In space, the US sees a rival in China

China launches telecommunication technology test satellite

China's Chang'e-4 makes historic landing on moon's far side

China launches first Hongyun project satellite

TIME AND SPACE
The Satellite Applications Catapult partners with Infostellar to provide improved ground station access

Why I'm excited about Amazon entering the SatCom industry

Year of many new beginnings for Indian space sector

ESA astronaut Alexander Gerst returns to Earth for the second time

TIME AND SPACE
Raytheon contracts Elbit Systems for Two Color Laser System

Holographic color printing for optical security

A high-performance material at extremely low temperatures

Chemical catalysts turn tiny 2D sheets into 3D objects

TIME AND SPACE
TESS discovers its third new planet, with longest orbit yet

Astronomers find warped protoplanetary disk around distant star

Citizen scientists find unusual exoplanet among Kepler data

Young planets orbiting red dwarfs may lack ingredients for life

TIME AND SPACE
New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'

NASA succeeds in historic flyby of faraway world









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.