Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



SOLAR SCIENCE
NASA watches the Sun put a stop to its own eruption
by Staff Writers
Greenbelt MD (SPX) Aug 14, 2017


Watch the video to view the observations and models that enabled scientists to track the failed solar eruption from its onset up through the solar atmosphere - and ultimately understand why it faded away. Credits: NASA's Goddard Space Flight Center/Genna Duberstein, producer. Download this video in HD formats from NASA Goddard's Scientific Visualization Studio

On Sept. 30, 2014, multiple NASA observatories watched what appeared to be the beginnings of a solar eruption. A filament - a serpentine structure consisting of dense solar material and often associated with solar eruptions - rose from the surface, gaining energy and speed as it soared. But instead of erupting from the Sun, the filament collapsed, shredded to pieces by invisible magnetic forces.

Because scientists had so many instruments observing the event, they were able to track the entire event from beginning to end, and explain for the first time how the Sun's magnetic landscape terminated a solar eruption. Their results are summarized in a paper published in The Astrophysical Journal on July 10, 2017.

"Each component of our observations was very important," said Georgios Chintzoglou, lead author of the paper and a solar physicist at Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, California, and the University Corporation for Atmospheric Research in Boulder, Colorado. "Remove one instrument, and you're basically blind. In solar physics, you need to have good coverage observing multiple temperatures - if you have them all, you can tell a nice story."

The study makes use of a wealth of data captured by NASA's Solar Dynamics Observatory, NASA's Interface Region Imaging Spectrograph, JAXA/NASA's Hinode, and several ground-based telescopes in support of the launch of the NASA-funded VAULT2.0 sounding rocket. Together, these observatories watch the Sun in dozens of different wavelengths of light that reveal the Sun's surface and lower atmosphere, allowing scientists to track the eruption from its onset up through the solar atmosphere - and ultimately understand why it faded away.

The day of the failed eruption, scientists pointed the VAULT2.0 sounding rocket - a sub-orbital rocket that flies for some 20 minutes, collecting data from above Earth's atmosphere for about five of those minutes - at an area of intense, complex magnetic activity on the Sun, called an active region. The team also collaborated with IRIS to focus its observations on the same region.

"We were expecting an eruption; this was the most active region on the Sun that day," said Angelos Vourlidas, an astrophysicist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, principal investigator of the VAULT2.0 project and co-author of the paper. "We saw the filament lifting with IRIS, but we didn't see it erupt in SDO or in the coronagraphs. That's how we knew it failed."

The Sun's landscape is controlled by magnetic forces, and the scientists deduced the filament must have met some magnetic boundary that prevented the unstable structure from erupting. They used these observations as input for a model of the Sun's magnetic environment. Much like scientists who use topographical data to study Earth, solar physicists map out the Sun's magnetic features, or topology, to understand how these forces guide solar activity.

Chintzoglou and his colleagues developed a model that identified locations on the Sun where the magnetic field was especially compressed, since rapid releases of energy - such as those they observed when the filament collapsed - are more likely to occur where magnetic field lines are strongly distorted.

"We computed the Sun's magnetic environment by tracing millions of magnetic field lines and looking at how neighboring field lines connect and diverge," said Antonia Savcheva, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and co-author of the paper. "The amount of divergence gives us a measure of the topology."

Their model shows this topology shapes how solar structures evolve on the Sun's surface. Typically, when solar structures with opposite magnetic orientations collide, they explosively release magnetic energy, heating the atmosphere with a flare and erupting into space as a coronal mass ejection - a massive cloud of solar material and magnetic fields.

But on the day of the Sept. 2014 near-eruption, the model indicated the filament instead pushed up against a complex magnetic structure, shaped like two igloos smashed against each other. This invisible boundary, called a hyperbolic flux tube, was the result of a collision of two bipolar regions on the sun's surface - a nexus of four alternating and opposing magnetic fields ripe for magnetic reconnection, a dynamic process that can explosively release great amounts of stored energy.

"The hyperbolic flux tube breaks the filament's magnetic field lines and reconnects them with those of the ambient Sun, so that the filament's magnetic energy is stripped away," Chintzoglou said.

This structure eats away at the filament like a log grinder, spraying chips of solar material and preventing eruption. As the filament waned, the model demonstrates heat and energy were released into the solar atmosphere, matching the initial observations. The simulated reconnection also supports the observations of bright flaring loops where the hyperbolic flux tube and filament met - evidence for magnetic reconnection.

While scientists have speculated such a process exists, it wasn't until they serendipitously had multiple observations of such an event that they were able to explain how a magnetic boundary on the Sun is capable of halting an eruption, stripping a filament of energy until it's too weak to erupt.

"This result would have been impossible without the coordination of NASA's solar fleet in support of our rocket launch," Vourlidas said.

This study indicates the Sun's magnetic topology plays an important role in whether or not an eruption can burst from the Sun. These eruptions can create space weather effects around Earth.

"Most research has gone into how topology helps eruptions escape," Chintzoglou said. "But this tells us that apart from the eruption mechanism, we also need to consider what the nascent structure encounters in the beginning, and how it might be stopped."

SOLAR SCIENCE
NASA instrument key to understanding solar powered planet arrives at Kennedy Space Center
Greenbelt MD (SPX) Aug 09, 2017
A new instrument that will monitor our planet's biggest power source, the Sun, arrived at NASA's Kennedy Space Center in Florida. It has a targeted November 2017 launch on a SpaceX Falcon 9 rocket to the International Space Station. The Total Solar and Spectral Irradiance Sensor (TSIS-1) instrument was built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP ... read more

Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
SpaceX launches super-computer to space station

NASA: let's say something to Voyager 1 on 40th anniversary of launch

Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

SOLAR SCIENCE
SHIIVER tank arrives at NASA's Marshall Center for spray-on foam insulation

'Dragon captured' as cargo arrives at space station

SpaceX launches super-computer to space station

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SOLAR SCIENCE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

SOLAR SCIENCE
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

SOLAR SCIENCE
Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

SOLAR SCIENCE
Archinaut Project conducts first large-scale 3D build in space-like environment

Air Force tests new radar receivers for rescue helicopters

Lockheed Martin integrates first modernized A2100 satellite

Marine Corps testing mobile 3D printing lab

SOLAR SCIENCE
Tidally locked exoplanets may be more common than previously thought

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

SOLAR SCIENCE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement