. 24/7 Space News .
STELLAR CHEMISTRY
NASA demos new star-watching technology with thousands of tiny shutters
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Oct 23, 2019

The Goddard-developed microshutter array technology has evolved since its initial development in the 1990s for the James Webb Space Telescope. Here are images of its various incarnations. A Next-Generation Microshutter Array will fly in space for the first time on October 27, 2019.

NASA scientists plan to demonstrate a revolutionary technology for studying hundreds of stars and galaxies at the same time - a new capability originally created for NASA's James Webb Space Telescope.

The technology, called the Next-Generation Microshutter Array (NGMSA), will fly for the first time on the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy, or FORTIS, mission on October 27. The array includes 8,125 tiny shutters, each about the width of a human hair, that open and close as needed to focus on specific celestial objects.

Led by Johns Hopkins University Professor Stephan McCandliss, FORTIS will launch aboard a Black Brant IX sounding rocket from White Sands Missile Range in New Mexico to study the star-forming galaxy, Messier 33, or M33. Located about 3 million light-years from Earth in the Triangulum constellation, M33 is the third largest member of the Local Group of galaxies that includes our own Milky Way and Andromeda.

"FORTIS needed our new microshutter technology for science. We benefit from a test platform to advance the readiness of this design for use in space. It's a great synergy," said Matt Greenhouse, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Greenhouse and his colleague, Goddard technologist Mary Li, are advancing the technology with support from NASA's Strategic Astrophysics Technology (SAT) program.

The sounding rocket mission is expected to address a wide range of risks associated with operating this new technology. It will also help lay the foundation for even larger arrays that future astrophysics missions will need.

Divining Structures Surrounding Emerging Hot Star Clusters
M33 is a spiral-disk galaxy littered with clusters of massive hot stars that have emerged within the past few million years from collapsing natal clouds of cold gas and dust. To study these bright clusters, which emit copious amounts of light at ultraviolet wavelengths, the FORTIS telescope will first locate the brightest clusters with its imager and an on-the-fly targeting algorithm will close all the tiny shutters except those coincident with the bright targets.

This will allow light to flow to the spectrograph where it will be broken into component wavelengths to reveal details about the physical conditions of the clusters and their surrounding material.

The microshutter technology gives scientists the ability to produce multiple spectra at once. This capability improves productivity on both sounding rocket missions, which offer only six minutes of observing time, or large space-based observatories, which can take up to a week to observe faint, far-away objects and gather enough light to obtain good spectra. With observing time at a premium, the ability to gather light from multiple objects at once is paramount.

Webb, scheduled to launch in 2021, will carry NASA's first-generation microshutter technology - four 365-by-172 microshutter arrays that together total 250,000 shutters. They will allow Webb to obtain spectra of hundreds of objects simultaneously.

What distinguishes the next-generation array on FORTIS from the one flying on Webb is how the shutters are opened and closed. Webb's arrays employ a large magnet that sweeps over the shutters to activate them. However, as with all mechanical parts, the magnet takes up space and adds weight. Furthermore, magnetically activated arrays can't be easily scaled up in size. As a result, this older technology is at a disadvantage for supporting future space telescopes larger than Webb.

Magnet Eliminated
To accommodate future missions, Goddard's microshutter-development team eliminated the magnet. The shutters in the pilot 128-by-64 array that will fly on FORTIS open and close through electrostatic interactions. By applying an alternating-current voltage to electrodes placed on the frontside of the microshutters, the shutters swing open. To latch the desired shutters, a direct current voltage is applied to electrodes on the backside.

Without a magnet, the next-generation array can be dramatically scaled up in size - and that's precisely what the team is attempting to accomplish. Particularly, Greenhouse and Li are using advanced manufacturing techniques to create a much larger, 840-by-420 array equipped with 352,800 microshutters, dramatically increasing an instrument's field of view.

"The array that is flying on FORTIS is a technology development prototype for the big one," Greenhouse said.

Other Sciences Could Benefit
Next-generation astrophysics missions aren't the only potential beneficiary of the magnet-free array. Heliophysicist Sarah Jones is considering implementing the FORTIS-type array on a sounding rocket mission called Loss Through Auroral Microburst Precipitation, or LAMP. LAMP will for the first time directly measure microbursts in pulsating aurorae, colorful light shows that occur 60 miles above Earth in a ring around the magnetic poles.

The technology could also greatly assist scientists' efforts to better understand the Sun's influence on Earth. By opening one shutter at a time, Jones said she could measure particle velocity in Earth's upper atmosphere and determine in which direction upper atmospheric winds are blowing. Scientists are interested in obtaining these measurements because these winds can create an atmospheric drag on low-Earth-orbiting satellites.

"We want to use this technology as soon as we can and are excited to use it," Jones said. "We haven't measured these winds directly in 30 years."

Jones's enthusiasm is understandable, Greenhouse said. "Everyone wants this technology," he said.

For more Goddard technology news, go here


Related Links
Sounding Rockets Program at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Arecibo Observatory's computing power to be enhanced
Orlando FL (SPX) Oct 18, 2019
The Arecibo Observatory in Puerto Rico is going to get a major computing power upgrade as the University of Central Florida expands its relationship with Microsoft. UCF manages the National Science Foundation's Arecibo Observatory (AO), home to one of the most powerful and sensitive radio telescopes in the world with a unique planetary radar system. AO has contributed to decades of science discovery including the first binary pulsar, the first exoplanet and more recently playing a key role in NASA ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
US makes history with first all-female spacewalk

China talks up tech prowess in face of US rivalry

Spacesuits of the future

NASA's Meir, Koch prepare to make history in first all-female spacewalk

STELLAR CHEMISTRY
Firefly Aerospace partners with Aerojet Rocketdyne

Aerojet Rocketdyne teams with NASA to develop novel rocket engine technology

Rocket Lab launches ninth Electron mission, deploys payload to highest orbit yet

Russia eyes launching satellite into orbit from Saudi Arabia

STELLAR CHEMISTRY
Mars once had salt lakes similar to Earth

Mars InSight's 'Mole' is moving again

Mars 2020 Rover unwrapped and ready for more testing

UK eases sanctions on Moscow to allow activities related to joint space mission to Mars

STELLAR CHEMISTRY
China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

STELLAR CHEMISTRY
SpaceX seeking many more satellites for space-based internet grid

Launch of the European AGILE 4.0 research project

OmegA team values partnerships with customer, suppliers

Call for innovation to advance Europe's lab in space

STELLAR CHEMISTRY
Ten highlights from NASA's Van Allen Probes mission

Sounding rocket tech could enable simultaneous, multi-point measurements

Highest throughput 3D printer is the future of manufacturing

Chains of atoms move at lightning speed inside metals

STELLAR CHEMISTRY
Ancient microbes are living inside Europe's deepest meteorite crater

Planetary Protection Review addresses changing reality of space exploration

Cascades of gas around young star indicate early stages of planet formation

The search for extrasolar planets continues

STELLAR CHEMISTRY
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.