. 24/7 Space News .
Ancient microbes are living inside Europe's deepest meteorite crater
by Brooks Hays
Washington (UPI) Oct 18, 2019

Rock cores collected from deep beneath the planet's surface suggest ancient microbes have been living inside Europe's largest meteorite crater for millions of years.

Some 400 million years ago, a massive space rock slammed into northern Europe, excavating a giant crater in the middle of what's now Sweden. Today, prospectors are drilling for natural gas within the confines of the ancient crater, the contours of which are called the Siljan Ring.

The drilling attempts have yielded fresh rock cores, several of which made their way to geochemistry labs at Linnaeus University in Sweden.

When scientists at Linnaeus investigated the rocks, they found evidence of long-term deep microbial activity.

"We examined the intensively fractured rock at significant depth in the crater and noted tiny crystals of calcium carbonate and sulphide in the fractures," Linnaeus researcher Henrik Drake said in a news release. "When we analyzed the chemical composition within these crystals it became clear to us that they formed following microbial activity."

"Specifically, the relative abundance of different isotopes of carbon and sulfur within these minerals tells us that microorganisms that produce and consume the greenhouse gas methane have been present, and also microbes that reduce sulfate into sulfide," Drake said. "These are isotopic fingerprints for ancient life."

Using radioisotopic dating techniques, scientists were able to determine that microbes were cycling methane during the formation tiny calcite crystals, and that the activity occurred between 80 and 22 million years ago.

"This marks long-term ancient microbial activity in the impact crater, but also that the microbes lived up to 300 million years after the impact," said Nick Roberts of the British Geological Survey.

Scientists have long theorized that ancient asteroid and comet impacts could have delivered the ingredients for early life forms to Earth, or perhaps even shepherded already thriving microbial communities from distant planets to ours. But the latest research -- published this week in the journal Nature Communications -- suggests the microbes living deep inside the Siljan crater arrived after the impact event.

"At Siljan we see that the crater is colonized but that it has mainly occurred when conditions, such as temperature, became more favorable than at the impact event," Drake said. "The impact structure itself, with a ring zone of down-faulted Paleozoic sediments, has been optimal for deep colonization, because organics and hydrocarbons from shales have migrated throughout the fractured crater and have acted as energy sources for the deep microbial communities."

But while the latest investigation didn't reveal evidence of alien microbes, it did offer proof that impact craters can serve as prime real estate for ancient microbe colonies.

"Our findings indeed confirm that impact craters are favorable microbial habitats on Earth and perhaps beyond," Drake said.

Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

The blob is real: Paris zoo showcases self-healing organism with 720 sexes
Washington (UPI) Oct 17, 2019
The star attraction at a zoo in Paris defies expectation. It looks like a fungus, but it acts like an animal. Technically, the organism known as the "blob," is neither. It also doesn't belong in the plant or bacteria kingdoms. The strange organism is a slime mold, a type of protist, but the creature defies both classification and expectations. Though the blob is without a brain, it can solve problems. It has no eyes or mouth, but the blob can find and digest food. If it's cut in half, the blob ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Spacesuits of the future

Huntsville to Host NASA's 2019 International Space Apps Challenge

Virgin Galactic to go public soon, plans to launch space tourism internationally

NASA's Meir, Koch prepare to make history in first all-female spacewalk

U.S. Army to deploy hypersonic missiles by 2023

NASA commits to future Artemis missions with more SLS rocket stages

Russia eyes launching satellite into orbit from Saudi Arabia

Aerojet Rocketdyne teams with NASA to develop novel rocket engine technology

Mars InSight's 'Mole' is moving again

MRO HiRISE camera views InSight and Curiosity on Mars

ExoMars parachute progress

UK eases sanctions on Moscow to allow activities related to joint space mission to Mars

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

SpaceX seeking many more satellites for space-based internet grid

Launch of the European AGILE 4.0 research project

OmegA team values partnerships with customer, suppliers

Call for innovation to advance Europe's lab in space

Space Traffic Controller Not A Job, But An Adventure

Ten highlights from NASA's Van Allen Probes mission

Sounding rocket tech could enable simultaneous, multi-point measurements

Physicists shed new light on how liquids behave with other materials

The search for extrasolar planets continues

Gas 'waterfalls' reveal infant planets around young star

Cascades of gas around young star indicate early stages of planet formation

The blob is real: Paris zoo showcases self-healing organism with 720 sexes

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.