. 24/7 Space News .
ROBO SPACE
NASA takes a cue from Silicon Valley to hatch artificial intelligence technologies
by Lonnie Shekhtman for GSFC News
Greenbelt MD (SPX) Nov 21, 2019

A 3D model of asteroid Eros.

Could the same computer algorithms that teach autonomous cars to drive safely help identify nearby asteroids or discover life in the universe? NASA scientists are trying to figure that out by partnering with pioneers in artificial intelligence (AI) - companies such as Intel, IBM and Google - to apply advanced computer algorithms to problems in space science.

Machine learning is a type of AI. It describes the most widely used algorithms and other tools that allow computers to learn from data in order to make predictions and categorize objects much faster and more accurately than a human being can. Consequently, machine learning is widely used to help technology companies recognize faces in photos or predict what movies people would enjoy. But some scientists see applications far beyond Earth.

Giada Arney, an astrobiologist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, hopes machine learning can help her and her colleagues find a needle of life in a haystack of data that will be collected by future telescopes and observatories such as NASA's James Webb Space Telescope.

"These technologies are very important, especially for big data sets and especially in the exoplanet field," Arney says. "Because the data we're going to get from future observations is going to be sparse and noisy. It's going to be really hard to understand. So using these kinds of tools has so much potential to help us."

To help scientists like Arney build cutting-edge research tools, NASA's Frontier Development Lab, or FDL, brings together technology and space innovators for eight weeks every summer to brainstorm and develop computer code. The four-year-old program is a partnership between the SETI Institute and NASA's Ames Research Center, both based in Silicon Valley where startup-hatching incubators that bring talented people together to accelerate the development of breakthrough technologies are abundant.

In NASA's version, FDL pairs science and computer engineering early-career doctoral students with experts from the space agency, academia, and some of the world's biggest technology companies. Partner companies contribute various combinations of hardware, algorithms, super-compute resources, funding, facilities and subject-matter experts. All of the AI techniques developed at FDL will be publicly available, with some already helping identify asteroids, find planets, and predict extreme solar radiation events.

"FDL feels like some really good musicians with different instruments getting together for a jam session in the garage, finding something really cool, and saying, 'Hey we've got a band here,'" says Shawn Domagal-Goldman, a NASA Goddard astrobiologist who, together with Arney, mentored an FDL team in 2018. Their team developed a machine learning technique for scientists who aim to study the atmospheres of exoplanets, or planets beyond our solar system.

These Goddard scientists hope to one day use advanced machine learning techniques to quickly interpret data revealing the chemistry of exoplanets based on the wavelengths of light emitted or absorbed by molecules in their atmospheres.

Since thousands of exoplanets have been discovered so far, making quick decisions about which ones have the most promising chemistry associated with habitability could help winnow down the candidates to only a few that deserve further, and costly, investigation.

To this end, the FDL team Arney and Domagal-Goldman helped advise, with technical support from Google AI, deployed a technique known as a "neural network." This technology can solve super complicated problems in a process analogous to the workings of the brain. In a neural network, billions of "neurons," which are nerve cells in the brain that help us form memories and make decisions, connect with billions of others to process and transmit information.

University of Oxford computer science graduate student, Adam Cobb, along with Michael D. Himes, a physics graduate student from the University of Central Florida, led a study to test the capability of a "Bayesian" neural network against a widely used machine learning technique known as a "random forest."

Another researcher team not associated with FDL had already used this latter method to analyze the atmosphere of WASP-12b, an exoplanet discovered in 2008, based on mountains of data collected by NASA's Hubble Space Telescope. Could the Bayesian neural network do better, the team wondered?

"We found out right away that the neural network had better accuracy than random forest in identifying the abundance of various molecules in WASP-12b's atmosphere," Cobb says.

But besides better accuracy, the Bayesian technique offered something equally as critical: it could tell the scientists how certain it was about its prediction. "In places where the data weren't good enough to give a really accurate result, this model was better at knowing that it wasn't sure of the answer, which is really important if we are to trust these predictions," Domagal-Goldman says.

While the technique developed by this team is still in development, other FDL technologies have already been adopted in the real world. By 2017, FDL participants developed a machine learning program that could quickly create 3D models of nearby asteroids, accurately estimating their shapes, sizes, and spin rates. This information is critical to NASA's efforts to detect and deflect threatening asteroids from Earth.

Traditionally, astronomers use simple computer software to develop 3D models. The software analyzes many radar measurements of a moving asteroid and then helps scientists infer its physical properties based on changes in the radar signal.

"An adept astronomer with standard compute resources, could shape a single asteroid in one to three months," says Bill Diamond, SETI's president and chief executive officer. "So the question for the research team was: Can we speed it up?"

The answer was yes. The team, which included students from France, South Africa and the United States, plus mentors from academia and from technology company Nvidia, developed an algorithm that could render an asteroid in as little as four days. Today, the technique is used by astronomers at the Arecibo Observatory in Puerto Rico to do nearly real-time shape modeling of asteroids.

The asteroid modeling, along with exoplanetary atmosphere analysis, are a couple of FDL examples that show the promise in applying sophisticated algorithms to the volumes of data collected by NASA's more than 100 missions.

As NASA heliophysicist Madhulika (Lika) Guhathakurta notes, the space agency gathers about 2 gigabytes of data (and growing) every 15 seconds from its fleet of spacecraft. "But we analyze only a fraction of that data, because we have limited people, time and resources. That is why we need to utilize these tools more," she says.

A lead on missions focused on understanding and predicting the Sun's effects on Earth, technology and astronauts in space, Guhathakurta has been with FDL for the last three years and has been a key architect in shaping this program. She supported a team in 2018 that resolved a problem with a malfunctioning sensor on NASA's Solar Dynamics Observatory (SDO), a spacecraft that studies the Sun's influence on Earth and near-Earth space.

Back in 2014, just four years after the mission launched, a sensor stopped returning data related to extreme ultraviolet (EUV) radiation levels - information that correlates with a ballooning of the Earth's outer atmosphere and thus affects the longevity of satellites, including the International Space Station. So computer science doctoral students from Stanford University and University of Amsterdam, among others, with mentors from organizations including IBM, Lockheed Martin, and SETI, developed a technique that could, essentially, fill in the missing data from the broken sensor.

Their computer program could do this by analyzing data from other SDO instruments, along with old data collected by the broken sensor during the four years it was working, to infer what EUV radiation levels that sensor would have detected based on what the other SDO instruments were observing at any given time. "We generated, basically, a virtual sensor," Guhathakurta says.

The potential of this type of this instrument is not lost on anyone. SETI head, Diamond, imagines a future where these virtual tools are incorporated on spacecraft, a practice that would allow for lighter, less complex and therefore cheaper missions. Domagal-Goldman and Arney envisage future exoplanet missions where AI technologies embedded on spacecraft are smart enough to make real-time science decisions, saving the many hours necessary to communicate with scientists on Earth.

"AI methods will help us free up processing power from our own brains by doing a lot of the initial legwork on difficult tasks," Arney says. "But these methods won't replace humans any time soon, because we'll still need to check the results."


Related Links
High Performance Computing at NASA
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
U.S. Army chooses FLIR's Kobra heavy robot vehicle
Washington (UPI) Nov 18, 2019
The U.S. Army announced it has chosen the Kobra robot made by FLIR Systems Inc. for the heavy version of its Common Robotic System. The track-mounted vehicles are used for explosive ordnance disposal and other heavy-lifting duties. The contract with FLIR, headquartered in Wilsonville, Ore., is valued at up to $109 million for the five-year production run. The Army sought a vehicle that weighs up to 700 pounds to carry a variety of payloads and sensors to support missions. The Kobra can l ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Sierra Nevada Corp. ships Shooting Star cargo module to Kennedy Space Center

Boeing Starliner to cost $90 Million per seat

NASA adds 5 more companies to bid for work on moon mission

Audit criticizes NASA for payments to Boeing in human spaceflight program

ROBO SPACE
China sends five satellites into orbit via single rocket

SpaceX Crew Dragon releases photos of emergency escape engines test

Arianespace will orbit TIBA-1 and Inmarsat GX5 with Ariane 5

Roscosmos creates rocket-monitoring system using technology found in smart homes

ROBO SPACE
Human Missions to Mars

Mars scientists investigate ancient life in Australia

China completes Mars lander test ahead of 2020 mission

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

ROBO SPACE
China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

ROBO SPACE
China sends two global multimedia satellites into planned orbit

Tesla Completes Acquisition of Maxwell Technologies

Space Talks 2019: bringing space to you

EU must boost spending in space or be squeezed out: experts

ROBO SPACE
Army project may lead to new class of high-performance materials

Headwall and geo-konzept Announce Hyperspectral Remote-Sensing Center in Europe

Amazon says 'bias' in Pentagon awarding $10 bn contract to Microsoft

Multimaterial 3D printing manufactures complex objects, fast

ROBO SPACE
Exoplanet axis study boosts hopes of complex life, just not next door

First detection of sugars in meteorites gives clues to origin of life

NASA's TESS helps astronomers study red-giant stars, examine a too-close planet

Making planets in a rocket

ROBO SPACE
Aquatic rover goes for a drive under the ice

NASA finds Neptune moons locked in 'Dance of Avoidance'

NASA scientists confirm water vapor on Europa

New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.