. 24/7 Space News .
TECH SPACE
NASA studies cosmic radiation to protect high-altitude travelers
by Mara Johnson-Groh for GSFC News
Greenbelt MD (SPX) Jan 30, 2017


illustration only

NASA scientists studying high-altitude radiation recently published new results on the effects of cosmic radiation in our atmosphere. Their research will help improve real-time radiation monitoring for aviation industry crew and passengers working in potentially higher radiation environments.

Imagine you're sitting on an airplane. Cruising through the stratosphere at 36,000 feet, you're well above the clouds and birds, and indeed, much of the atmosphere. But, despite its looks, this region is far from empty.

Just above you, high-energy particles, called cosmic rays, are zooming in from outer space. These speedy particles crash wildly into molecules in the atmosphere, causing a chain reaction of particle decays. While we are largely protected from this radiation on the ground, up in the thin atmosphere of the stratosphere, these particles can affect humans and electronics alike.

Launched in September 2015 near Fort Sumner, New Mexico, NASA's Radiation Dosimetry Experiment, or RaD-X, used a giant helium-filled balloon to send instruments into the stratosphere to measure cosmic radiation coming from the sun and interstellar space. The results, presented in a special issue of the Space Weather Journal, showcase some of the first measurements of their kind at altitudes from 26,000 to over 120,000 feet above Earth.

"The measurements, for the first time, were taken at seven different altitudes, where the physics of dosimetry is very different," said Chris Mertens, principal investigator of the RaD-X mission at NASA's Langley Research Center in Hampton, Virginia. "By having the measurements at these seven altitudes we're really able to test how well our models capture the physics of cosmic radiation."

Cosmic radiation is caused by high-energy particles that continually shower down from space. Most of these energetic particles come from outside the solar system, though the sun is an important source during solar storms.

Earth's magnetosphere, which acts as a giant magnetic shield, blocks most of the radiation from ever reaching the planet. Particles with sufficient energy, however, can penetrate both Earth's magnetosphere and atmosphere, where they collide with molecules of nitrogen and oxygen. These collisions cause the high-energy particles to decay into different particles through processes known as nucleonic and electromagnetic cascades.

If you could see the particles from the airplane window, you would notice them clustering in a region above the plane. The density of the atmosphere causes the decay to happen predominantly at a height of 60,000 feet, which creates a concentrated layer of radiation particles known as the Pfotzer maximum.

Radiation in the atmosphere can be measured in two ways - by how much is present or by how much it can harm biological tissue. The latter is known as the dose equivalent and is the standard for quantifying health risks. This quantity is notoriously hard to measure, as it requires knowing the both the type and energy of the particle that deposited the radiation, not simply how many particles there are.

These particles, both the primary high-energy particles and the secondary decay particles, can have adverse health effects on humans. Cosmic radiation breaks down DNA and produces free radicals, which can alter cell functions.

The RaD-X mission took high-altitude measurements, few of which previously existed, to better understand how cosmic radiation moves through Earth's atmosphere. Measuring dose equivalent rate over a range of altitudes, they found a steady increase in the rate higher in the atmosphere, a finding seemingly contrary to the concentration of particles at the Pfotzer maximum. This can be explained by the complex interplay of primary and secondary particles at these altitudes, as the primary particles found higher up have a much more damaging effect on tissue than the secondary particles.

Because of their time spent in Earth's upper atmosphere, aircrew in the aviation industry are exposed to nearly double the radiation levels of ground-based individuals. Exposure to cosmic radiation is also a concern for crew aboard the International Space Station and future astronauts journeying to Mars, which has a radiation environment similar to Earth's upper atmosphere. Learning how to protect humans from radiation exposure is a key step in future space exploration.

The results from RaD-X will be used to improve space weather models, like the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety, or NAIRAS, model, which predicts radiation events. These predictions are used by commercial pilots to know when and where radiation levels are unsafe, allowing rerouting of aircraft in the affected region when necessary.

While balloon flights like RaD-X are essential for modelling the radiation environment, they cannot provide real-time radiation monitoring, which NAIRAS requires for forecasting. NASA's Automated Radiation Measurements for Aerospace Safety program works in conjunction with RaD-X to develop and test instruments that can be flown aboard commercial aircraft for real-time monitoring at high altitudes.

Currently, an instrument called a TEPC - short for tissue equivalent proportional counter - is the standard instrument for measuring cosmic radiation. This instrument is large, expensive and cannot be commercial built - making it less than ideal for wide-scale distribution.

"We need small, compact, solid-state based instruments calibrated against the TEPC that can reliably measure the dose equivalents and can be integrated into aircraft cheaply and compactly," Mertens said.

The flight mission tested two new instruments - the RaySure detector and the Teledyne TID detector - in hope that they can be installed on commercial aircraft in the future. These new instruments offer the advantage of being compact and easily produced. During RaD-X mission testing, both instruments were found to be promising candidates for future real-time, in situ monitoring.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
RaD-X Mission at NASA
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Discovery to inspire more radiation-resistant metals
Ann Arbor, Mich. (UPI) Dec 16, 2016
Metals exposed to radiation at high temperatures swell. That's a problem for the nuclear energy and aerospace industries. Scientists at the University of Michigan may have found a solution. Researchers there found metal alloys boasting three or more equally distributed elements are resistant to radiation-induced swelling. Radiation undermines metallic structures. When a radiation ... read more


TECH SPACE
Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Progress MS-03 cargo spacecraft to reenter January 31

TECH SPACE
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

NASA sounding rocket launches into Alaskan night

SmallGEO's first flight reaches orbit

Russia to check space flight engines over faulty parts

TECH SPACE
Meteorite reveals 2 billion years of volcanic activity on Mars

Opportunity marks 13 years of ground operations on Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

TECH SPACE
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

TECH SPACE
Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

TECH SPACE
NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

Anatomy of a debris incident

TECH SPACE
New planet imager delivers first science at Keck

Dedicated Planet Imager Opens Its Eyes to Other Worlds

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

TECH SPACE
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.