. 24/7 Space News .
AEROSPACE
NASA marks milestones in development of electric X-57
by Matt Kamlet for AFRC
Cleveland OH (SPX) Jun 21, 2019

X-57, pictured here in its final Mod IV configuration, will be powered by a battery system that consists of 16 battery modules. This system will comprise 800 lbs of the aircraft's total weight. NASA Aeronautics researchers will use the Maxwell to demonstrate that electric propulsion can make planes quieter, more efficient and more environmentally friendly.

NASA's X-57 project has marked two critical milestones, taking two major steps toward demonstrating the benefits of electric propulsion for aviation.

More general aviation aircraft are in the air every year, which means that the challenge to address aircraft efficiency, noise and emissions becomes greater. NASA's X-57 Maxwell, the agency's first all-electric X-plane, will seek to meet that challenge by demonstrating innovative technology through electric-powered experimental flight.

The X-57 project is achieving this through several successive phases, in which the aircraft, a Tecnam P2006T, will undergo different modifications, or "Mods," which NASA is tackling simultaneously to progress from one phase to the next, both safely and efficiently.

One of these milestones was achieved as part of X-57's Mod II activity - the configuration in which the X-57 project will flight test the research propulsion system, and will eventually fly as a fully electric aircraft. Mod II includes the replacement of the baseline aircraft's two inboard combustion engines with electric cruise motors.

Having integrated much of the initial electric system into the Mod II aircraft, engineers for the first time tested the motors and propellers, integrated onto the vehicle, in an initial spin test.

"This is the first time we've had the electric motors installed with propellers and had them spinning," said Sean Clarke, NASA's Principal Investigator for X-57. "This was a big milestone, as it was a big systems test where we were able to run both motors on the airplane at the same time.

"It's really exciting to actually have all of the systems integrated and to be able to operate the vehicle that we've been designing for our system tests. It's a huge opportunity for us, so we're very excited."

The test, which took place at Scaled Composites' facility in Mojave, California, verified that the propellers, which pull energy from the motor to provide thrust and propel the aircraft, operate as expected as the motors were provided with significant amounts of power for the first time.

Instead of using batteries, which the vehicle will ultimately use during taxi and flight tests, the spin test was carried out from the ground using a power supply. Following stages of Mod II testing include repeating the test with the use of batteries, and delivery of the Mod II aircraft to NASA's Armstrong Flight Research Center in Edwards, California. Once delivered to NASA, the Mod II aircraft will undergo verification, followed by taxi tests, and eventually, experimental flight tests.

While Mod II proceeds toward testing, efforts are already well underway for X-57's Mod III phase.

Mod III includes the replacement of the aircraft's baseline wing with a new, high-aspect ratio wing, and features the repositioning of the electric cruise motors out to the wingtips - an arrangement that presents the potential to boost aircraft efficiency considerably, but was not feasible with heavier, traditional combustion engines.

X-57's Mod III activity also achieved a major milestone, as NASA received delivery of the Mod III wing from the project's prime contractor, Empirical Systems Aerospace, Inc. of San Luis Obispo, California, or ESAero.

Upon delivery of the wing, NASA immediately began running tests to verify that its specifications and components are sound, and that the wing matches NASA's structure and design models.

NASA's testing of the wing, which was built by Xperimental LLC in San Luis Obispo, includes weight and balance measurement, ground vibration testing, and wing loading tests. Weight and balance measurement determines the total mass and the center of gravity on the wing, and helps NASA verify that the aircraft will perform correctly during taxi and flight tests.

Ground vibration testing, or GVT, considers the engineering challenges of the relatively thin, high aspect-ratio wing, which could be prone to flutter and other vibration conditions in flight. The GVT lets NASA verify whether the structural properties built into the wing matches what is expected for flight.

Finally, the wing will undergo wing loading tests. These tests will confirm whether the wing structure acts as predicted as it carries the approximately 3,000 pound aircraft through flight.

"I think that getting the wing here really brings Mod III to reality for the team," said X-57 Deputy Operations Engineering Lead Kirsten Boogaard. "Having the wing come here and people being able to see the size of it, the look of it, just actually see it in person instead of in models, I think, is a really big deal for the project.

"It's a cool thing when ideas go from concept to reality, but that's what NASA does."

After these tests are complete, NASA will then send the wing back to ESAero, where the wing will undergo fit checks onto a second "fit-check" fuselage. Here, the wing will also have 12 nacelles integrated, which will eventually house 12 small, electric high-lift motors and propellers, which will be featured on X-57's final phase, Mod IV.


Related Links
Aeronautics Research Mission Directorate
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


AEROSPACE
$54 million study aims to improve Eurofighter Typhoon aircraft
Washington DC (UPI) Jun 20, 2019
Members of the Eurofighter Typhoon fighter program at the Paris Air Show on Wednesday signed a $54 million contract to conduct studies to improve the aircraft. Eurofighter Jagdflugzeug GmbH, Eurojet Turbo GmbH and the NATO Eurofighter & Tornado Management Agency agreed to mutually support the long-term development of the combat aircraft. The contract calls for a 19-month study of aircraft modifications and a nine-month study of adaptations of its EJ200 engine. For the engine, rang ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
NASA Invests $45M in US Small Businesses for Space Tech Development

Delays in NASA commercial spacecraft certification jeopardizes ISS crew access

Watchdog criticizes rising costs, delays of NASA's next Moon rocket

With lions, elephants, Airbnb goes all-in on adventure tours

AEROSPACE
Ariane 5 launches T-16 and EUTELSAT 7C satellites

Swedish Space Corporation to introduce a new service for easy access to space

Raytheon, Northrop Grumman partner on hypersonic missile system

European reusable launch systems for more sustainability in spaceflight

AEROSPACE
Curiosity detects unusually high methane levels

Mars 2020 Rover Gets Its Wheels

A Rover for Phobos and Deimos

Meteors explain Mars' cloud cover

AEROSPACE
Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

AEROSPACE
RBC Signals awarded SBIR Phase I contract by US Air Force

Israeli space tech firm hiSky expands to the UK

Newtec collaborates with QinetiQ, marking move into space sector

Apollo-era tech built foundation, but private industry now leads space innovation

AEROSPACE
Benefits of 3-D Woven Composite Fabrics

Researchers see around corners to detect object shapes

AFRL produces lighter, thinner transparent armor

Enabling revolutionary nondestructive inspection capability

AEROSPACE
Two Earth-like Planets Discovered Near Teegarden's Star

Most Comprehensive Search for Radio Technosignatures

The formative years: giant planets vs. brown dwarfs

Jupiter-like exoplanets found in sweet spot in most planetary systems

AEROSPACE
Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa

On Pluto the Winter is approaching, and the atmosphere is vanishing into frost

Neptune's moon Triton fosters rare icy union









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.