. 24/7 Space News .
TIME AND SPACE
NASA Tests Atomic Clock for Deep Space Navigation
by Danny Baird for GSFC News
Greenbelt MD (SPX) Feb 08, 2018

A glimpse of the Deep Space Atomic Clock in the middle bay of the General Atomics Orbital Test Bed spacecraft. Image Credit: NASA

In deep space, accurate timekeeping is vital to navigation, but many spacecraft lack precise timepieces on board. For 20 years, NASA's Jet Propulsion Laboratory in Pasadena, California, has been perfecting a clock. It's not a wristwatch; not something you could buy at a store. It's the Deep Space Atomic Clock (DSAC), an instrument perfect for deep space exploration.

Currently, most missions rely on ground-based antennas paired with atomic clocks for navigation. Ground antennas send narrowly focused signals to spacecraft, which, in turn, return the signal. NASA uses the difference in time between sending a signal and receiving a response to calculate the spacecraft's location, velocity and path.

This method, though reliable, could be made much more efficient. For example, a ground station must wait for the spacecraft to return a signal, so a station can only track one spacecraft at a time. This requires spacecraft to wait for navigation commands from Earth rather than making those decisions on board and in real-time.

"Navigating in deep space requires measuring vast distances using our knowledge of how radio signals propagate in space," said Todd Ely of JPL, DSAC's principal investigator.

"Navigating routinely requires distance measurements accurate to a meter or better. Since radio signals travel at the speed of light, that means we need to measure their time-of-flight to a precision of a few nanoseconds. Atomic clocks have done this routinely on the ground for decades. Doing this in space is what DSAC is all about."

The DSAC project aims to provide accurate onboard timekeeping for future NASA missions. Spacecraft using this new technology would no longer have to rely on two-way tracking. A spacecraft could use a signal sent from Earth to calculate position without returning the signal and waiting for commands from the ground, a process that can take hours. Timely location data and onboard control allow for more efficient operations, more precise maneuvering and adjustments to unexpected situations.

This paradigm shift enables spacecraft to focus on mission objectives rather than adjusting their position to point antennas earthward to close a link for two-way tracking.

Additionally, this innovation would allow ground stations to track multiple satellites at once near crowded areas like Mars. In certain scenarios, the accuracy of that tracking data would exceed traditional methods by a factor of five.

DSAC is an advanced prototype of a small, low-mass atomic clock based on mercury-ion trap technology. The atomic clocks at ground stations in NASA's Deep Space Network are about the size of a small refrigerator. DSAC is about the size of a four-slice toaster, and could be further miniaturized for future missions.

The DSAC test flight will take this technology from the laboratory to the space environment. While in orbit, the DSAC mission will use the navigation signals from U.S. GPS coupled with precise knowledge of GPS satellite orbits and clocks to confirm DSAC's performance. The demonstration should confirm that DSAC can maintain time accuracy to better than two nanoseconds (.000000002 seconds) over a day, with a goal of achieving 0.3 nanosecond accuracy.

Once DSAC has proved its mettle, future missions can use its technology enhancements. The clock promises increased tracking data quantity and improved tracking data quality. Coupling DSAC with onboard radio navigation could ensure that future exploration missions have the navigation data needed to traverse the solar system.

Technologies aboard DSAC could also improve GPS clock stability and, in turn, the service GPS provides to users worldwide. Ground-based test results have shown DSAC to be upwards of 50 times more stable than the atomic clocks currently flown on GPS. DSAC promises to be the most stable navigation space clock ever flown.

"We have lofty goals for improving deep space navigation and science using DSAC," said Ely.

"It could have a real and immediate impact for everyone here on Earth if it's used to ensure the availability and continued performance of the GPS system."

DSAC is a partnership between NASA's Space Technology Mission Directorate and the Space Communications and Navigation program office, a program under the Human Exploration and Operations Mission Directorate. DSAC will launch in 2018 as a hosted payload on General Atomic's Orbital Test Bed spacecraft aboard the U.S. Air Force Space Technology Program (STP-2) mission.


Related Links
Deep Space Atomic Clock
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
DARPA Program Aims to Extend Lifetime of Quantum Systems
Washington DC (SPX) Jan 19, 2018
Whether it is excited electrons emitting photons in a lightbulb or the vibrational frequency of atoms in an atomic clock, quantum phenomena are simultaneously fundamental aspects of nature and the basis of current state-of-the-art and future technologies. This is particularly the case as sensor and device performance continue to improve and approach their fundamental limits. It is not lost on DARPA that controlling quantum phenomena is an increasingly important challenge in the realm of national d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Russia to start offering spacewalks for tourists

Celebrating 60 years of groundbreaking US space science

Soon humans will travel out beyond the Moon

Putting down roots in space

TIME AND SPACE
NASA conducts 2nd RS-25 engine hot fire test of 2018

Elon Musk is launching a Tesla into space - here's how SpaceX will do it

SpaceX launches world's most powerful rocket toward Mars

SpaceX poised to launch 'world's most powerful rocket'

TIME AND SPACE
Studies of Clay Formation Provide Clues to Early Martian Climate

Opportunity Celebrates 14 Years of Working on Mars

Mount Sharp 'Photobombs' Mars Curiosity Rover

NASA tests power system to support manned missions to Mars

TIME AND SPACE
China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

TIME AND SPACE
Brexit prompts EU to move satellite site to Spain

Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

TIME AND SPACE
In-Orbit Servicing Market Opportunity Exceeds $3 Billion

Quantum cocktail provides insights on memory control

VR helps surgeons to 'see through' tissue and reconnect blood vessels

Latest Data From IMAGE Indicates Spacecraft's Power Functional

TIME AND SPACE
What the TRAPPIST-1 Planets Could Look Like

TRAPPIST-1 Planets Probably Rich in Water

New Clues to Compositions of TRAPPIST-1 Planets

Trappist planets have water, may be 'habitable': researchers

TIME AND SPACE
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.