![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Lori Keesey for GSFC News Greenbelt MD (SPX) Feb 13, 2018
A compact detector technology applicable to all types of cross-disciplinary scientific investigations has found a home on a new CubeSat mission designed to find the electromagnetic counterparts of events that generate gravitational waves. NASA scientist Georgia de Nolfo and her collaborator, astrophysicist Jeremy Perkins, recently received funding from the agency's Astrophysics Research and Analysis Program to develop a CubeSat mission called BurstCube. This mission, which will carry the compact sensor technology that de Nolfo developed, will detect and localize gamma-ray bursts caused by the collapse of massive stars and mergers of orbiting neutron stars. It also will detect solar flares and other high-energy transients once it's deployed into low-Earth orbit in the early 2020s. The cataclysmic deaths of massive stars and mergers of neutron stars are of special interest to scientists because they produce gravitational waves - literally, ripples in the fabric of space-time that radiate out in all directions, much like what happens when a stone is thrown into a pond. Since the Laser Interferometer Gravitational Wave Observatory, or LIGO, confirmed their existence a couple years ago, LIGO and the European Virgo detectors have detected other events, including the first-ever detection of gravitational waves from the merger of two neutron stars announced in October 2017. Less than two seconds after LIGO detected the waves washing over Earth's space-time, NASA's Fermi Gamma-ray Space Telescope detected a weak burst of high-energy light - the first burst to be unambiguously connected to a gravitational-wave source. These detections have opened a new window on the universe, giving scientists a more complete view of these events that complements knowledge obtained through traditional observational techniques, which rely on detecting electromagnetic radiation - light - in all its forms.
Complementary Capability "But what happens if an event occurs and Fermi is on the other side of Earth, which is blocking its view," Perkins said. "Fermi won't see the burst." BurstCube, which is expected to launch around the time additional ground-based LIGO-type observatories begin operations, will assist in detecting these fleeting, hard-to-capture high-energy photons and help determine where they originated. In addition to quickly reporting their locations to the ground so that other telescopes can find the event in other wavelengths and home in on its host galaxy, BurstCube's other job is to study the sources themselves.
Miniaturized Technology Under the concept de Nolfo has advanced through Goddard's Internal Research and Development program funding, the team will position four blocks of cesium-iodide crystals, operating as scintillators, in different orientations within the spacecraft. When an incoming gamma ray strikes one of the crystals, it will absorb the energy and luminesce, converting that energy into optical light. Four arrays of silicon photomultipliers and their associated read-out devices each sit behind the four crystals. The photomultipliers convert the light into an electrical pulse and then amplify this signal by creating an avalanche of electrons. This multiplying effect makes the detector far more sensitive to this faint and fleeting gamma rays. Unlike the photomultipliers on Fermi's GBM, which are bulky and resemble old-fashioned television tubes, de Nolfo's devices are made of silicon, a semiconductor material. "Compared with more conventional photomultiplier tubes, silicon photomultipliers significantly reduce mass, volume, power and cost," Perkins said. "The combination of the crystals and new readout devices makes it possible to consider a compact, low-power instrument that is readily deployable on a CubeSat platform." In another success for Goddard technology, the BurstCube team also has baselined the Dellingr 6U CubeSat bus that a small team of center scientists and engineers developed to show that CubeSat platforms could be more reliable and capable of gathering highly robust scientific data. "This is high-demand technology," de Nolfo said. "There are applications everywhere." For other Goddard technology news, go here
![]() ![]() Acoustic tractor beam could pave the way for levitating humans Bristol UK (SPX) Feb 05, 2018 Acoustic tractor beams use the power of sound to hold particles in mid-air, and unlike magnetic levitation, they can grab most solids or liquids. For the first time University of Bristol engineers have shown it is possible to stably trap objects larger than the wavelength of sound in an acoustic tractor beam. This discovery opens the door to the manipulation of drug capsules or micro-surgical implements within the body. Container-less transportation of delicate larger samples is now also a possibility a ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |