. 24/7 Space News .
PHYSICS NEWS
NASA Technology to Help Locate Electromagnetic Counterparts of Gravitational Waves
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Feb 13, 2018

Principal Investigator Jeremy Perkins and his co-investigator, Georgia de Nolfo, recently won funding to build a new CubeSat mission, called BurstCube. Respectively, Perkins and de Nolfo hold a crystal, or scintillator, and silicon photomultiplier array technology that will be used to detect and localize gamma-ray bursts for gravitational-wave science. The photomultiplier array shown here specifically was developed for another CubeSat mission called TRYAD, which will investigate gamma-ray bursts in high-altitude lightning clouds.

A compact detector technology applicable to all types of cross-disciplinary scientific investigations has found a home on a new CubeSat mission designed to find the electromagnetic counterparts of events that generate gravitational waves.

NASA scientist Georgia de Nolfo and her collaborator, astrophysicist Jeremy Perkins, recently received funding from the agency's Astrophysics Research and Analysis Program to develop a CubeSat mission called BurstCube. This mission, which will carry the compact sensor technology that de Nolfo developed, will detect and localize gamma-ray bursts caused by the collapse of massive stars and mergers of orbiting neutron stars. It also will detect solar flares and other high-energy transients once it's deployed into low-Earth orbit in the early 2020s.

The cataclysmic deaths of massive stars and mergers of neutron stars are of special interest to scientists because they produce gravitational waves - literally, ripples in the fabric of space-time that radiate out in all directions, much like what happens when a stone is thrown into a pond.

Since the Laser Interferometer Gravitational Wave Observatory, or LIGO, confirmed their existence a couple years ago, LIGO and the European Virgo detectors have detected other events, including the first-ever detection of gravitational waves from the merger of two neutron stars announced in October 2017.

Less than two seconds after LIGO detected the waves washing over Earth's space-time, NASA's Fermi Gamma-ray Space Telescope detected a weak burst of high-energy light - the first burst to be unambiguously connected to a gravitational-wave source.

These detections have opened a new window on the universe, giving scientists a more complete view of these events that complements knowledge obtained through traditional observational techniques, which rely on detecting electromagnetic radiation - light - in all its forms.

Complementary Capability
Perkins and de Nolfo, both scientists at NASA's Goddard Space Flight Center in Greenbelt, Maryland, see BurstCube as a companion to Fermi in this search for gravitational-wave sources. Though not as capable as the much larger Gamma-ray Burst Monitor, or GBM, on Fermi, BurstCube will increase coverage of the sky. Fermi-GBM observes the entire sky not blocked by the Earth.

"But what happens if an event occurs and Fermi is on the other side of Earth, which is blocking its view," Perkins said.

"Fermi won't see the burst."

BurstCube, which is expected to launch around the time additional ground-based LIGO-type observatories begin operations, will assist in detecting these fleeting, hard-to-capture high-energy photons and help determine where they originated. In addition to quickly reporting their locations to the ground so that other telescopes can find the event in other wavelengths and home in on its host galaxy, BurstCube's other job is to study the sources themselves.

Miniaturized Technology
BurstCube will use the same detector technology as Fermi's GBM; however, with important differences.

Under the concept de Nolfo has advanced through Goddard's Internal Research and Development program funding, the team will position four blocks of cesium-iodide crystals, operating as scintillators, in different orientations within the spacecraft. When an incoming gamma ray strikes one of the crystals, it will absorb the energy and luminesce, converting that energy into optical light.

Four arrays of silicon photomultipliers and their associated read-out devices each sit behind the four crystals. The photomultipliers convert the light into an electrical pulse and then amplify this signal by creating an avalanche of electrons. This multiplying effect makes the detector far more sensitive to this faint and fleeting gamma rays.

Unlike the photomultipliers on Fermi's GBM, which are bulky and resemble old-fashioned television tubes, de Nolfo's devices are made of silicon, a semiconductor material.

"Compared with more conventional photomultiplier tubes, silicon photomultipliers significantly reduce mass, volume, power and cost," Perkins said.

"The combination of the crystals and new readout devices makes it possible to consider a compact, low-power instrument that is readily deployable on a CubeSat platform."

In another success for Goddard technology, the BurstCube team also has baselined the Dellingr 6U CubeSat bus that a small team of center scientists and engineers developed to show that CubeSat platforms could be more reliable and capable of gathering highly robust scientific data.

"This is high-demand technology," de Nolfo said.

"There are applications everywhere."

For other Goddard technology news, go here


Related Links
Fermi Gamma-ray Space Telescope
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
Acoustic tractor beam could pave the way for levitating humans
Bristol UK (SPX) Feb 05, 2018
Acoustic tractor beams use the power of sound to hold particles in mid-air, and unlike magnetic levitation, they can grab most solids or liquids. For the first time University of Bristol engineers have shown it is possible to stably trap objects larger than the wavelength of sound in an acoustic tractor beam. This discovery opens the door to the manipulation of drug capsules or micro-surgical implements within the body. Container-less transportation of delicate larger samples is now also a possibility a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
NanoRacks adds Thales Alenia Space to team up on Commercial Space Station Airlock Module

ESA and Airbus sign partnership agreement for new ISS commercial payload platform Bartolomeo

All-in-one service for the Space Station

Marshall tech cleans your air, keeps your beer cold and helps with math

PHYSICS NEWS
Elon Musk, visionary Tesla and SpaceX founder

Japan Successfully Launches World's Smallest Carrier Rocket

Russia launches cargo spacecraft after aborted liftoff

What's next for SpaceX?

PHYSICS NEWS
HKU scientist makes key discoveries in the search for life on Mars

Tiny Crystal Shapes Get Close Look From Mars Rover

NASA leverages proven technologies to build agency's first planetary wind lidar

Mars Reconnaissance Orbiter capatures images of splitting slope streaks

PHYSICS NEWS
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

PHYSICS NEWS
UK companies seek cooperation with Russia in space technologies

GovSat-1 Successfully Launched on SpaceX Falcon 9 Rocket

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

PHYSICS NEWS
Helping authorities respond more quickly to airborne radiological threats

Singapore takes next step towards implementing world's first space-based VHF communications

A Detailed Timeline of The IMAGE Mission Recovery

Researchers take terahertz data links around the bend

PHYSICS NEWS
Are you rocky or are you gassy

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

What the TRAPPIST-1 Planets Could Look Like

PHYSICS NEWS
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.