. 24/7 Space News .
SATURN DAILY
NASA scientists find 'impossible' cloud on Titan
by Staff Writers
Pasadena CA (JPL) Sep 21, 2016


The hazy globe of Titan hangs in front of Saturn and its rings in this natural color view from NASA's Cassini spacecraft. Image courtesy NASA/JPL-Caltech/Space Science Institute. For a larger version of this image please go here.

The puzzling appearance of an ice cloud seemingly out of thin air has prompted NASA scientists to suggest that a different process than previously thought - possibly similar to one seen over Earth's poles - could be forming clouds on Saturn's moon Titan.

Located in Titan's stratosphere, the cloud is made of a compound of carbon and nitrogen known as dicyanoacetylene (C4N2), an ingredient in the chemical cocktail that colors the giant moon's hazy, brownish-orange atmosphere.

Decades ago, the infrared instrument on NASA's Voyager 1 spacecraft spotted an ice cloud just like this one on Titan. What has puzzled scientists ever since is this: they detected less than 1 percent of the dicyanoacetylene gas needed for the cloud to condense. Recent observations from NASA's Cassini mission yielded a similar result. Using Cassini's composite infrared spectrometer, or CIRS - which can identify the spectral fingerprints of individual chemicals in the atmospheric brew - researchers found a large, high-altitude cloud made of the same frozen chemical. Yet, just as Voyager found, when it comes to the vapor form of this chemical, CIRS reported that Titan's stratosphere is as dry as a desert.

"The appearance of this ice cloud goes against everything we know about the way clouds form on Titan," said Carrie Anderson, a CIRS co-investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the study.

The typical process for forming clouds involves condensation. On Earth, we're familiar with the cycle of evaporation and condensation of water. The same kind of cycle takes place in Titan's troposphere - the weather-forming layer of Titan's atmosphere - but with methane instead of water.

A different condensation process takes place in the stratosphere - the region above the troposphere - at Titan's north and south winter poles. In this case, layers of clouds condense as the global circulation pattern forces warm gases downward at the pole. The gases then condense as they sink through cooler and cooler layers of the polar stratosphere.

Either way, a cloud forms when the air temperature and pressure are favorable for the vapor to condense into ice. The vapor and the ice reach a balance point - an equilibrium - that is determined by the air temperature and pressure. Because of this equilibrium, scientists can calculate the amount of vapor where ice is present.

"For clouds that condense, this equilibrium is mandatory, like the law of gravity," said Robert Samuelson, an emeritus scientist at Goddard and a co-author of the paper.

But the numbers don't compute for the cloud made from dicyanoacetylene. The scientists determined that they would need at least 100 times more vapor to form an ice cloud where the cloud top was observed by Cassini's CIRS.

One explanation suggested early on was that the vapor might be present, but Voyager's instrument wasn't sensitive enough in the critical wavelength range needed to detect it. But when CIRS also didn't find the vapor, Anderson and her Goddard and Caltech colleagues proposed an altogether different explanation. Instead of the cloud forming by condensation, they think the C4N2 ice forms because of reactions taking place on other kinds of ice particles. The researchers call this "solid-state chemistry," because the reactions involve the ice, or solid, form of the chemical.

The first step in the proposed process is the formation of ice particles made from the related chemical cyanoacetylene (HC3N). As these tiny bits of ice move downward through Titan's stratosphere, they get coated by hydrogen cyanide (HCN). At this stage, the ice particle has a core and a shell comprised of two different chemicals. Occasionally, a photon of ultraviolet light tunnels into the frozen shell and triggers a series of chemical reactions in the ice. These reactions could begin either in the core or within the shell. Both pathways can yield dicyanoacteylene ice and hydrogen as products.

The researchers got the idea of solid-state chemistry from the formation of clouds involved in ozone depletion high above Earth's poles. Although Earth's stratosphere has scant moisture, wispy nacreous clouds (also called polar stratospheric clouds) can form under the right conditions. In these clouds, chlorine-bearing chemicals that have entered the atmosphere as pollution stick to crystals of water ice, resulting in chemical reactions that release ozone-destroying chlorine molecules.

"It's very exciting to think that we may have found examples of similar solid-state chemical processes on both Titan and Earth," said Anderson.

The researchers suggest that, on Titan, the reactions occur inside the ice particles, sequestered from the atmosphere. In that case, dicyanoacetylene ice wouldn't make direct contact with the atmosphere, which would explain why the ice and the vapor forms are not in the expected equilibrium.

"The compositions of the polar stratospheres of Titan and Earth could not differ more," said Michael Flasar, CIRS principal investigator at Goddard. "It is amazing to see how well the underlying physics of both atmospheres has led to analogous cloud chemistry."

The findings are published in the journal Geophysical Research Letters.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Saturn at JPL
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SATURN DAILY
Cassini Begins Epic Final Year at Saturn
Pasadena CA (JPL) Sep 19, 2016
After more than 12 years studying Saturn, its rings and moons, NASA's Cassini spacecraft has entered the final year of its epic voyage. The conclusion of the historic scientific odyssey is planned for September 2017, but not before the spacecraft completes a daring two-part endgame. Beginning on November 30, Cassini's orbit will send the spacecraft just past the outer edge of the main ring ... read more


SATURN DAILY
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

SATURN DAILY
NASA iTech Fosters Technology Needed for Journey to Mars

A Mixed-reality Trip to Mars

Pacamor Kubar Bearings awarded contract to support Mars 2020 Mission

Rover Makes Its Way to 'Spirit Mound,'

SATURN DAILY
Feeding a Mars mission: the challenges of growing plants in space

NASA's black female mathematicians hit the big screen

Entropy

Goddard space center mission-critical for ISS astronauts

SATURN DAILY
Astronauts given comfort upgrade

Rocket maker aims high with lofty output targets

Batch production of Long March 5 underway

Tiangong 2 initial tests proceeding well

SATURN DAILY
NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

SATURN DAILY
Parallel launch preparations put Ariane 5 on track for next launch

Rocket agreement marks countdown to New Zealand's first space launch

Vega orbits "eyes in the skies" on its latest success

Russia postpones Soyuz MS-02 ISS launch due to electrical glitch

SATURN DAILY
Stellar activity can mimic misaligned exoplanets

ALMA locates possible birth site of icy giant planet

New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

SATURN DAILY
Breakthrough in materials science: Kiel research team can bond metals with nearly all surfaces

State Dept. approves possible radar sale to Egypt

Tardigrades use protective protein to shield their DNA from radiation

Beyond plastic: Design world goes green and 'meaningful'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.