Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

NASA-MIT Study Evaluates Efficiency of Oceans as Heat Sink, Atmospheric Gases Sponge
by Staff Writers
New York NY (SPX) Jun 20, 2017

The red line on the map shows the Gulf Stream current, the surface portion of the Atlantic Meridional Overturning Circulation. Shown in shades of blue are the concentrations of CFCs at depth in the ocean. Nearer to the equator, the CFCs only occur at the surface. As the Gulf Stream current moves north, they begin to be drawn down to depth with the downward pull of the conveyor belt. (Image Credit: NASA/Jenny Hottle)

The world's oceans are like brakes slowing down the full effects of greenhouse gas warming of the atmosphere. Over the last ten years, one-fourth of human-emissions of carbon dioxide as well as 90 percent of additional warming due to the greenhouse effect have been absorbed by the oceans. Acting like a massive sponge, the oceans pull from the atmosphere heat, carbon dioxide and other gases, such as chlorofluorocarbons, oxygen and nitrogen and store them in their depths for decades to centuries and millennia.

New NASA research is one of the first studies to estimate how much and how quickly the ocean absorbs atmospheric gases and contrast it with the efficiency of heat absorption. Using two computer models that simulate the ocean, NASA and MIT scientists found that gases are more easily absorbed over time than heat energy.

In addition, they found that in scenarios where the ocean current slows down due to the addition of heat, the ocean absorbs less of both atmospheric gases and heat, though its ability to absorb heat is more greatly reduced. The results were published in Geophysical Research Letters, a journal of the American Geophysical Union.

"As the ocean slows down, it will keep uptaking gases like carbon dioxide more efficiently, much more than it will keep uptaking heat. It will have a different behavior for chemistry than it has for temperature," said Anastasia Romanou, lead author and climate scientist at NASA's Goddard Institute for Space Studies and Columbia University in New York City.

She and colleagues at the Massachusetts Institute of Technology in Cambridge, Massachusetts used the NASA GISS ocean model and the MIT General Circulation Model to simulate one of the Atlantic's major current systems that delivers absorbed heat and gases to the depths.

In the Atlantic Ocean, the Gulf Stream is part of what's called the Atlantic Meridional Overturning Circulation, a conveyor belt of ocean water that carries warm water from Florida to Greenland where it cools and sinks to 1000 meters or more before traveling back down the coast to the tropics.

On its northward journey, the water at the surface absorbs gases like carbon dioxide and chlorofluorocarbons (CFCs) - the latter are, to a large, extent, the gases responsible for the ozone hole over Antarctica - as well as excess heat from the atmosphere. When it sinks near Greenland, those dissolved gases and heat energy are effectively buried in the ocean for years to decades and longer. Removed from the atmosphere by the ocean, the impact of their warming on the climate has been dramatically reduced.

To understand and quantify the ocean's sponge-like capabilities, the researchers used the two independent models of Atlantic Ocean currents together with shipboard observations of chlorofluorocarbons as a starting point. Chlorofluorocarbons are what's called a passive tracer.

"I think of it as a colored dye," said co-author John Marshall, a professor of oceanography at the Massachusetts Institute of Technology. "If I have a bucket of water and just stir it around and put some food coloring in it, the dye goes down into the water, and it doesn't influence the circulation of the water."

In the real world as well as in the model, this allows scientists to "see" how much of the gas is absorbed from the atmosphere into the ocean and then follow it as it travels around the world in the currents.

Adding heat to the ocean, in contrast, slows down the overturning circulation because ocean currents depend on temperature gradients - moving from warmer locations to cooler locations - that weaken under global warming as cooler waters heat up. This means that estimating how much heat the ocean absorbs by only using a tracer may not be accurate.

"The results show that we need to think differently about how the ocean responds to taking up heat and passive tracers or greenhouse gases. Then we need to study them in parallel but using different methods," Romanou said.

These results from the computer models of the Atlantic Meridional Overturning Circulation are one of the many moving parts that come together in global climate models. By refining scientists' understanding of how efficiently gases and heat are taken up, the finding will improve global climate model projections for future climate scenarios, said Marshall.

This is especially true for projections that stretch tens or a hundred years into the future, when those tracers and other gases that behave similarly like carbon dioxide, as well as excess heat energy, reach the upward turn of the conveyor belt and return to the surface. When that happens some portion of them will return to the atmosphere after their long underwater journey around the planet.

"Most of the excess heat from climate change will go into the ocean eventually, we think," Romanou said. "Most of the excess chemical pollutants and greenhouse gases will be buried in the ocean. But the truth is that the ocean recirculates that extra load and, at some point, will release some of it back to the atmosphere, where it will keep raising temperatures, even if future carbon dioxide emissions were to be much lower than they are now."

This eventual release of buried gases and heat from the oceans is sometimes called the "warming in the pipeline" or "warming commitment" that people will eventually have to contend with, Romanou said.

Romanou, A., J. Marshall, M. Kelley, and J. Scott, 2017: Role of the ocean's AMOC in setting the uptake efficiency of transient tracers. Geophys. Res. Lett., early on-line, doi:10.1002/2017gl072972.

EU's Juncker says no Paris climate deal renegotiation
Strasbourg, France (AFP) June 14, 2017
European Commission chief Jean-Claude Juncker on Wednesday rejected US President Donald Trump's suggestion that the Paris climate pact could be renegotiated. Trump's decision two weeks ago to pull out of the landmark pact was "a sign of abdication from common action", Juncker told the European Parliament. Trump has made a vague suggestion that he could try to renegotiate terms with bette ... read more

Related Links
Goddard Institute for Space Studies
Climate Science News - Modeling, Mitigation Adaptation

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

To Be or Not to Be: At 20 ISS Goes Strong, But for How Long

Pence hails new NASA astronauts as 'best of us'

Additional Astronaut on the Space Station Means Dozens of New Team Members on the Ground

Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Proton returns to flight with US satellite after 12 month hiatus

NASA awards Universal Stage Adapter contract for SLS

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

Walkabout Above 'Perseverance Valley'

Hot rocks, not warm atmosphere, led to relatively recent water-carved valleys on Mars

Opportunity Surveying the spillway into Perseverance Valley

Window to a watery past on Mars

Moon or Mars - humanity's next stop

China's space station to help maintain co-orbital telescope

Seeds of 5,000-year-old tree bud after returning from space

What China's space ambitions have to do with politics

Jumpstart goes into alliance with major aerospace and defence group ADS

Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

Oyster shells inspire new method to make superstrong, flexible polymers

Study explains how jewel scarab beetles appear golden

New technique enables 3-D printing with paste of silicone particles in water

Magnets, all the way down

Astronomers Explain Formation of Seven Exoplanets Around TRAPPIST-1

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

Flares May Threaten Planet Habitability Near Red Dwarfs

The Art of Exoplanets

A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement