. 24/7 Space News .
STELLAR CHEMISTRY
NASA Advances First-Ever Silicon-Based X-ray Optic
by Staff Writers
Greenbelt MD (SPX) Feb 08, 2017


Scientist Will Zhang has created a manufacturing facility to create a new-fangled X-ray optic made of silicon. This image shows the buffing machine to remove imperfections from the mirror's surface. Image courtesy NASA/W. Hrybyk. For a larger version of this image please go here.

NASA scientist William Zhang has created and proven a technique for manufacturing lightweight, high-resolution X-ray mirrors using silicon - a material commonly associated with computer chips. Zhang, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, has shown in repeated testing that single-crystal silicon - a hard, brittle non-metallic element used in the manufacturing of computer chips - works exceptionally well as an X-ray optic.

Given the cost of building space observatories - which only increase in price as they get larger and heavier - the goal is to develop easily reproducible lightweight optics, without sacrificing quality. According to Zhang, use of silicon would give X-ray astrophysicists what they have long wanted: lightweight, super-thin mirrors that offer a significantly larger collection area and dramatically improved resolution - all at a reduced cost, Zhang said.

To date, no one has created an X-ray mirror that addresses all these performance goals. Furthermore, no one has polished and figured silicon for X-ray optics, which must be curved and nested inside a canister-like assembly to collect highly energetic X-ray photons. With this special configuration, X-rays graze the mirrors' surfaces - like how a thrown pebble skims across the surface of a pond - rather than passing through them.

Silicon, which doesn't warp even when cut or exposed to fluctuating temperatures, offers a viable solution, Zhang said. "We have executed our mirror-making procedures many times," he added. "These represent the best lightweight X-ray mirrors ever. As a matter of fact, of all the astronomical X-ray mirrors that have been produced and flown, only Chandra's are better," he said, referring to one of NASA's Great Observatories, an X-ray mission that carries the highest-resolution X-ray mirrors ever launched. "But we aspire to match and then exceed Chandra's mirror quality before 2020."

Zhang intends to achieve that goal, in part, with NASA Strategic Astrophysics Technology funding. He and his team plan to further advance the non-conventional technology in preparation for a future X-ray mission.

Old Hand at Mirror Making
Zhang is not a newcomer to the mirror-making business.

Fifteen years ago, he set out to develop a less-expensive, more efficient technique for crafting lightweight X-ray mirrors. He succeeded. Four years ago, he delivered 9,000 super-thin, curved glass mirrors for NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, mission using a novel manufacturing technique in which he placed thin pieces of commercially available glass on a mandrel and heated the entire assembly inside an oven - a process called slumping.

As the glass heated, it softened and folded over the mandrel to produce a curved mirror that the Copenhagen-based Danish Technical University then coated with layers of silicon and tungsten to maximize its X-ray reflectance.

Taking it to the Limit
Though Zhang proved the technique and produced thousands of modest-resolution mirrors ideal for NuSTAR, Zhang realized that he had taken the approach to its limit. "I spent a couple years trying to make slumped glass better. I got all the mileage I could get."

He got rid of eight of his 10 ovens used in the slumping process and turned his attention, instead, to single-crystal silicon.

Unbeknownst to him, another Goddard technologist, Vince Bly, had already investigated the material's use, ultimately producing a thick, yet lightweight spare mirror for the Goddard-built Thermal Infrared Sensor, one of two instruments developed for NASA's Landsat Data Continuity Mission. Though the mission didn't use the mirror because the optic had never flown in space, Bly said testing indicated that it offered a viable option.

When Zhang heard about Bly's work, he and Bly started working together, benefiting from each other's experience. "He used what we had done to solve his own problem," Bly said.

No-Stress Silicon
The key, both said, lies with the material itself. Traditional materials for making mirrors - glass, ceramics, and metals - suffer from high internal stress, especially when cut or exposed to changing temperatures. These stresses become increasingly unpredictable as the mirror becomes thinner.

"Single crystal silicon is an excellent material for making spaceflight X-ray mirrors," Zhang said. "It is inexpensive and abundantly available because of the semiconductor industry. Furthermore, it is a perfect material. It is immune from the internal stresses that can change the shape of X-ray mirrors made of glass."

This is because every atom is arranged in a lattice configuration, which prevents the material from distorting even when cut or shaped. In other words, if a sheet of plywood were made of silicon, it would be perfectly flat and immune from warping, he said.

Learned from Slumping
Zhang's new process grows out of what he learned through glass slumping, he said. He takes a block of silicon and heats it to eliminate any stress that may have arisen from its handling. With a band saw, he creates the approximate shape and uses other machining tools and chemicals to further grind and refine the block's surface. Like slicing cheese, he then cuts a thin substrate measuring just a fraction of an inch in thickness from the block and polishes the surface. The last step is coating the individual segments with iridium to improve reflectance.

With his NASA funding, Zhang and his team are perfecting techniques for aligning and bonding 6,000 mirror segments to form meta-shells that would be integrated inside a mirror assembly projected to weigh about 200 pounds and stand just a 1.6-feet tall. Ultimately, he would like to create six meta-shells and automate the alignment process.

"Making lightweight, high-resolution, relatively inexpensive X-ray mirrors has become my life's work," Zhang said, referring to his quest to develop a lighter, more capable X-ray mirror. "When I started developing mirrors 15 years ago, I thought I'd get it done in a couple years. Fifteen years later, I'm still at it," Zhang said.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
by Lori Keesey for GSFC News
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Keck will peer deep into the cosmic web with new spectrograph
Kamuela, HI (SPX) Jan 25, 2017
W. M. Keck Observatory (Keck Observatory) is pushing the cutting edge of scientific discovery with the addition of the world's most sensitive instrument for measuring the tendrils of faint gas in the intergalactic medium known as the cosmic web. The 5-ton instrument, the size of an ice cream truck, is named the Keck Cosmic Web Imager (KCWI). KCWI will uncover vital clues about the life-cycle of ... read more


STELLAR CHEMISTRY
A new recruit for ESA's astronaut corps

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

STELLAR CHEMISTRY
Commercial Launch of Proton-M Carrier Rocket Planned For Early April - Roscosmos

India to launch record 104 satellites next week

ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Russia to call tender for 2nd Phase of Vostochny Spaceport construction in Fall

STELLAR CHEMISTRY
UAE Aims to Launch Its First Ever Mars Mission in 2020

Opportunity Takes Advantage of her Location to do a Mini Science Campaign

Swirling spirals at the north pole of Mars

Curiosity rover sharpens paradox of ancient Mars

STELLAR CHEMISTRY
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

STELLAR CHEMISTRY
NASA seeks partnerships with US companies to advance commercial space technologies

An exciting year in space for Intelsat

Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

STELLAR CHEMISTRY
New beam pattern yields more precise radar, ultrasound imaging

Anatomy of a debris incident

Japan's troubled 'space junk' mission fails

New material that contracts when heated holds great industrial potential

STELLAR CHEMISTRY
Santa Fe Institute researchers look for life's lower limits

Dedicated Planet Imager Opens Its Eyes to Other Worlds

New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

STELLAR CHEMISTRY
New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.