Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Much faster than a speeding bullet, planets and stars escape the Milky Way
by Staff Writers
Hanover NH (SPX) Mar 30, 2012


Dartmouth astronomers Idan Ginsburg and professor Gary Wegner suggest that the supermassive black hole at our galaxy's center can fling stars and planets outward at high speeds. Eventually, these will escape the Milky Way and travel through the intergalactic void. Credit: Eli Burak.

Idan Ginsburg, a graduate student in Dartmouth's Department of Physics and Astronomy, studies some of the fastest moving objects in the cosmos. When stars and their orbiting plants wander too close to the supermassive black hole at the center of the Milky Way, their encounter with the black hole's gravitational force can either capture them or eject them from the galaxy, like a slingshot, at millions of miles per hour.

Although their origin remains a mystery and although they are invisible, black holes found at galaxy centers make their presence known through the effects they have on their celestial surroundings. The Milky Way's black hole, a monster with a mass four million times that of the Sun, feeds on some of its neighbors and thrusts others out into the intergalactic void.

It's the expelled objects that "become hypervelocity planets and stars," say Ginsburg. "What we learn from these high-speed travelers has significance for our understanding of planetary formation and evolution near the central black hole."

Ginsburg, along with his doctoral adviser Professor Gary Wegner, and Harvard Professor Abraham Loeb are publishing a paper in the Monthly Notices of the Royal Astronomical Society.

It describes how the team constructed computer simulations of these hypervelocity bodies as a means to understanding the dynamics involved. "The paper is a 'call to arms' for other astronomers to join the search," Ginsburg announces.

Born in Israel, Ginsburg came to the United States as a child and grew up as a Midwesterner. After high school in Lawrence, Kan., graduating from the University of Illinois at Urbana-Champaign, and studies at Harvard, Ginsburg came to Dartmouth almost five years ago.

For the origin of hypervelocity bodies, Ginsburg and his colleagues point to the close interaction of a binary star system-two stars orbiting a common center-with a massive black hole.

The likely scenario is the black hole draws one of the pair into its gravitational well while simultaneously ejecting the other at 1.5 million miles per hour. More than 20 of these hypervelocity stars have been identified in the Milky Way.

"You can also have a lone hypervelocity planet, peeled away from its star and ejected from the black hole. The same mechanism that produces a hypervelocity star produces a hypervelocity planet," Ginsburg explains.

"But because it is so small and traveling up to 30 million miles per hour, it cannot be seen. That doesn't mean they won't eventually be found, but currently it is beyond the limitations of our technology."

Ginsburg contends, however, that you could see a hypervelocity star ejected with planets still in tow. In this case, you might be able to see the planets as they cross in front of the star like an eclipse, appearing as a dip in its light curve.

While the paper discusses the lone hypervelocity planets, it also draws attention to the planets rotating around the hypervelocity stars.

"That is something that we can detect now," Ginsburg says, "which I think makes it very interesting. ... As of yet nobody has looked for these planets transiting hypervelocity stars. We are telling people in this paper that you should look for these."

.


Related Links
Dartmouth College
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Citizen Scientists Reveal a Bubbly Milky Way
Pasadena CA (JPL) Mar 08, 2012
A team of volunteers has pored over observations from NASA's Spitzer Space Telescope and discovered more than 5,000 "bubbles" in the disk of our Milky Way galaxy. Young, hot stars blow these bubbles into surrounding gas and dust, indicating areas of brand new star formation. Upwards of 35,000 "citizen scientists" sifted through the Spitzer infrared data as part of the online Milky Way Proj ... read more


STELLAR CHEMISTRY
Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

STELLAR CHEMISTRY
Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

Slight Drop Of Left-Front Wheel

'Mount Sharp' On Mars Links Geology's Past and Future

A glow in the Martian night throws light on atmospheric circulation

STELLAR CHEMISTRY
NASA Space Network to Begin New Design Phase For Ground Segment

Leading Government Space Programs Under Strong Budget Pressure

ICAP Ocean Tomo Auctions NASA Software Patent Portfolios

Not your average heat shield

STELLAR CHEMISTRY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

STELLAR CHEMISTRY
Aerojet Propulsion Helps Deliver Astronaut Care Packages

Soyuz return from ISS set for April 27

European cargo vessel docks with space station

Beaming Success for ISS Fans

STELLAR CHEMISTRY
SpaceX names safety panel

Swiss pioneer motor aimed at slashing satellite launch costs

ATREX Mission Launched from Wallops

ILS Proton Launches Intelsat 22

STELLAR CHEMISTRY
Billions of Habitable Zone Rocky Planets Could be Orbiting Red Dwarf Stars

Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

STELLAR CHEMISTRY
'Full-body' audit finds abuses at China Apple plants

ORNL process converts polyethylene into carbon fiber

Foxconn promises improvements after labour audit

Google plans low-price tablet computer: reports




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement