Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Citizen Scientists Reveal a Bubbly Milky Way
by Staff Writers
Pasadena CA (JPL) Mar 08, 2012


A team of volunteers from the general public has pored over observations from NASA's Spitzer Space Telescope and discovered more than 5,000 "bubbles" in the disk of our Milky Way galaxy. Young, hot stars blow the bubbles into surrounding gas and dust, highlighting areas of brand new star formation. Upwards of 35,000 "citizen scientists" sifted through the Spitzer infrared data as part of the online Milky Way Project to find these telltale bubbles. The users have turned up 10 times as many bubbles as previous surveys so far.
Volunteers for the project are shown a small section of Spitzer's huge infrared Milky Way image (left), which they then scan for cosmic bubbles. Using a sophisticated drawing tool, the volunteers trace the shape and thickness of the bubbles. All the user drawings can be overlaid on top of one another to form a so-called "heat map" (middle). Features that have been identified repeatedly by many different users jump out, revealing the overall pattern of bubbles in this part of the galaxy. At least five volunteers must flag a candidate bubble before it is included in the final catalog (right). The brightness of each bubble in the catalog is determined by its "hit rate," or the fraction of users who traced it out.
The faintest ones were identified by 10 percent of the users, while solid white indicates a hit rate of 50 percent or better. After identifying all apparent bubbles, which can include wispy arcs of partially broken rings and the circles-within-circles of overlapping bubbles, volunteers get another of the 12,263 possible image sections to scrutinize. With so much sky to cover, it is clear why so many volunteers are needed to do this kind of science. Image credit: NASA/JPL-Caltech/Oxford University. For a larger version of this image please go here.

A team of volunteers has pored over observations from NASA's Spitzer Space Telescope and discovered more than 5,000 "bubbles" in the disk of our Milky Way galaxy. Young, hot stars blow these bubbles into surrounding gas and dust, indicating areas of brand new star formation.

Upwards of 35,000 "citizen scientists" sifted through the Spitzer infrared data as part of the online Milky Way Project to find these telltale bubbles. The volunteers have turned up 10 times as many bubbles as previous surveys so far.

"These findings make us suspect that the Milky Way is a much more active star-forming galaxy than previously thought," said Eli Bressert, an astrophysics doctoral student at the European Southern Observatory, based in Germany, and the University of Exeter, England, and co-author of a paper submitted to the Monthly Notices of the Royal Astronomical Society.

"The Milky Way's disk is like champagne with bubbles all over the place," he said.

Computer programs struggle at identifying the cosmic bubbles. But human eyes and minds do an excellent job of noticing the wispy arcs of partially broken rings and the circles-within-circles of overlapping bubbles.

The Milky Way Project taps into the "wisdom of crowds" by requiring that at least five users flag a potential bubble before its inclusion in the new catalog. Volunteers mark any candidate bubbles in the infrared Spitzer images with a sophisticated drawing tool before proceeding to scour another image.

"The Milky Way Project is an attempt to take the vast and beautiful data from Spitzer and make extracting the information a fun, online, public endeavor," said Robert Simpson, a postdoctoral researcher in astronomy at Oxford University, England, principal investigator of the Milky Way Project and lead author of the paper.

The data come from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and Multiband Imaging Photometer for Spitzer Galactic (MIPSGAL) surveys. These datasets cover a narrow, wide strip of the sky measuring 130 degrees wide and just two degrees tall.

From a stargazer's perspective, a two-degree strip is about the width of your index finger held at arm's length, and your arms opened to the sky span about 130 degrees. The surveys peer through the Milky Way's disk and right into the galaxy's heart.

The bubbles tagged by the volunteers vary in size and shape, both with distance and due to local gas cloud variations. The results will help astronomers better identify star formation across the galaxy. One topic under investigation is triggered star formation, in which the bubble-blowing birth of massive stars compresses nearby gas that then collapses to create further fresh stars.

"The Milky Way Project has shown that nearly a third of the bubbles are part of 'hierarchies,' where smaller bubbles are found on or near the rims of larger bubbles," said Matthew Povich, a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellow at Penn State, University Park, and co-author of the paper. "This suggests new generations of star formation are being spawned by the expanding bubbles."

Variations in the distribution pattern of the bubbles intriguingly hint at structure in the Milky Way. For example, a rise in the number of bubbles around a gap at one end of the survey could correlate with a spiral arm. Perhaps the biggest surprise is a drop-off in the bubble census on either side of the galactic center.

"We would expect star formation to be peaking in the galactic center because that's where most of the dense gas is," said Bressert. "This project is bringing us way more questions than answers."

In addition, the Milky Way Project users have pinpointed many other phenomena, such as star clusters and dark nebulae, as well as gaseous "green knots" and "fuzzy red objects." Meanwhile, the work with the bubbles continues, with each drawing helping to refine and improve the catalog.

Other authors of the paper include Sarah Kendrew of the Max Planck Institute, Heidelberg, Germany; Chris Lintott and Arfon Smith, also of the University of Oxford and the Adler Planetarium in Chicago, Ill.; Kim Arvidsson, also of the Adler Planetarium; Grace Wolf-Chase, also of the Adler Planetarium and the University of Chicago; Reid Sherman, also of the University of Chicago; Claudia Cyganowski of the Harvard-Smithsonian Center for Astronomy, Cambridge, Mass. and a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellow; Sarah Maddison of Swinburne University, Hawthorn, Australia; and Kevin Schawinski of Yale University, New Haven, Conn. and an Einstein Fellow.

.


Related Links
Spitzer at Caltech
Spitzer at NASA
Milky Way Project
Zooniverse
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Rare Earth element found far, far away
Cambridge MA (SPX) Feb 24, 2012
Nearly 13.7 billion years ago, the universe was made of only hydrogen, helium and traces of lithium - byproducts of the Big Bang. Some 300 million years later, the very first stars emerged, creating additional chemical elements throughout the universe. Since then, giant stellar explosions, or supernovas, have given rise to carbon, oxygen, iron and the rest of the 94 naturally occurring elements ... read more


STELLAR CHEMISTRY
Apollo 15: Follow the Tracks

Looking at the Man in the Moon

Lunar lander firing up for touchdown

China to launch moon-landing orbiter in 2013

STELLAR CHEMISTRY
NASA Mars Orbiter Catches Twister in Action

Working models for the gravitational field of Phobos

Community College Scholars Selected to Design Rovers

Slight Cleaning of Opportunity Mars Rover Solar Panels

STELLAR CHEMISTRY
Tile Makers Creating Orion Shield

Weird and wonderful gadgets wow world's top IT fair

O, Pioneers! (part 2): The Derelicts of Space

Workers Remove Apollo-era Engines from Crawler at VAB

STELLAR CHEMISTRY
China hopes to send Long March-5 rocket into space in 2014

Upgraded carrier rocket ready for China's first manned space docking

Long March 7 carrier rocket to lift off in five years

Logistics, recycling key to China's space station

STELLAR CHEMISTRY
Though Shuttle Retired, ISS Still Open For Business, Research Going Strong

New date set for Europe's resupply mission to ISS

A New Website Sharing ISS Benefits For Humanity

Harper Government renews commitment to ISS

STELLAR CHEMISTRY
Engineers Tuck NuSTAR in its Nose Cone

Lockheed Martin Selects Alaska's Kodiak Launch Complex To Support Future Athena Launches

The initial Ariane 5 for launch in 2012 completes its final assembly

Arianespace maintains its open dialog with the space insurance sector

STELLAR CHEMISTRY
Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

A Planetary Exo-splosion

Extending the Habitable Zone for Red Dwarf Stars

STELLAR CHEMISTRY
Smart, self-healing hydrogels open far-reaching possibilities in medicine, engineering

'SimCity' game rebuilt for age of climate change

Apple unveils new iPad, Apple TV box

Dr. Strangelove and How I Learned to Love Space Debris




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement