Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Runaway Planets Zoom at a Fraction of Light-Speed
by Staff Writers
Cambridge MA (SPX) Mar 26, 2012


A typical hypervelocity planet would slingshot outward at 7 to 10 million miles per hour. However, a small fraction of them could gain much higher speeds under ideal conditions.

Seven years ago, astronomers boggled when they found the first runaway star flying out of our Galaxy at a speed of 1.5 million miles per hour. The discovery intrigued theorists, who wondered: If a star can get tossed outward at such an extreme velocity, could the same thing happen to planets?

New research shows that the answer is yes. Not only do runaway planets exist, but some of them zoom through space at a few percent of the speed of light - up to 30 million miles per hour.

"These warp-speed planets would be some of the fastest objects in our Galaxy. If you lived on one of them, you'd be in for a wild ride from the center of the galaxy to the Universe at large," said astrophysicist Avi Loeb of the Harvard-Smithsonian Center for Astrophysics.

"Other than subatomic particles, I don't know of anything leaving our galaxy as fast as these runaway planets," added lead author Idan Ginsburg of Dartmouth College.

Such speedy worlds, called hypervelocity planets, are produced in the same way as hypervelocity stars. A double-star system wanders too close to the supermassive black hole at the galactic center. Strong gravitational forces rip the stars from each other, sending one away at high speed while the other is captured into orbit around the black hole.

For this study, the researchers simulated what would happen if each star had a planet or two orbiting nearby. They found that the star ejected outward could carry its planets along for the ride. The second star, as it's captured by the black hole, could have its planets torn away and flung into the icy blackness of interstellar space at tremendous speeds.

A typical hypervelocity planet would slingshot outward at 7 to 10 million miles per hour. However, a small fraction of them could gain much higher speeds under ideal conditions.

Current instruments can't detect a lone hypervelocity planet since they are dim, distant, and very rare. However, astronomers could spot a planet orbiting a hypervelocity star by watching for the star to dim slightly when the planet crosses its face in a transit.

For a hypervelocity star to carry a planet with it, that planet would have to be in a tight orbit. Therefore, the chances of seeing a transit would be relatively high, around 50 percent.

"With one-in-two odds of seeing a transit, if a hypervelocity star had a planet, it makes a lot of sense to watch for them," said Ginsburg.

Eventually, such worlds will escape the Milky Way and travel through the intergalactic void.

"Travel agencies advertising journeys on hypervelocity planets might appeal to particularly adventurous individuals," added Loeb.

The research will be published in the Monthly Notices of the Royal Astronomical Society, in a paper authored by Idan Ginsburg, Avi Loeb, and Gary Wegner (Dartmouth College).

.


Related Links
Harvard-Smithsonian Center for Astrophysics
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
Some orbits more popular than others in solar systems
Tucson AZ (SPX) Mar 23, 2012
Computer simulations have revealed a plausible explanation for a phenomenon that has puzzled astronomers: Rather than occupying orbits at regular distances from a star, giant gas planets similar to Jupiter and Saturn appear to prefer to occupy certain regions in mature solar systems while staying clear of others. "Our results show that the final distribution of planets does not vary smooth ... read more


EXO WORLDS
NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

EXO WORLDS
Geologists discover new class of landform - on Mars

Red Food For the Red Planet

Mars on a Shoestring

India's Mars mission gets Rs.125 crore

EXO WORLDS
NASA Seeks Space Launch System Advanced Development Solutions

Patent requests in Europe reach record in 2011

SciTechTalk: Can long space missions work?

Experimental Payloads Selected For Commercial Suborbital Flights

EXO WORLDS
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

EXO WORLDS
ESA Cargo Ship Carries Research and Technology Investigations to ISS

Japan Shares ISS SMILES via Atmospheric Data Distribution

ATV Edoardo Amaldi set for liftoff

Astrium: double delivery for ATV-3 Edoardo Amaldi launch

EXO WORLDS
Europe's smart supply ship on its way to Space Station

Third Ariane 5 ready for launch in 2012

Europe's next weather satellite gears up for launch

Europe launches third robot freighter to space station

EXO WORLDS
Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

EXO WORLDS
Astrium's satellites reap first fruits in Canada

Liquid-like Materials May Pave Way for New Thermoelectric Devices

ISS crew takes shelter to avoid passing space junk

How the alphabet of data processing is growing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement