. 24/7 Space News .
TECTONICS
Microplate discovery dates birth of Himalayas
by Staff Writers
Sydney, Australia (SPX) Nov 10, 2015


This is the newly discovered tectonic plate, named Mammerickx Microplate. Image courtesy University of Sydney. For a larger version of this image please go here.

An international team of scientists has discovered the first oceanic microplate in the Indian Ocean - helping identify when the initial collision between India and Eurasia occurred, leading to the birth of the Himalayas.

Although there are at least seven microplates known in the Pacific Ocean, this is the first ancient Indian Ocean microplate to be discovered. Radar beam images from an orbiting satellite have helped put together pieces of this plate tectonic jigsaw and pinpointed the age for the collision, whose precise date has divided scientists for decades.

Reported in Earth and Planetary Science Letters, the team of Australian and US scientists believe the collision occurred 47 million years ago when India and Eurasia initially smashed into each other.

Researchers led by the University of Sydney School of Geosciences discovered that crustal stresses caused by the initial collision cracked the Antarctic Plate far away from the collisional zone and broke off a fragment the size of Australia's Tasmania in a remote patch of the central Indian Ocean.

The authors, comprising Professor Dietmar Muller and Dr Kara Matthews from the University of Sydney and Professor David Sandwell from the Scripps Institution of Oceanography, have named the ancient Indian microplate the Mammerickx Microplate, after Dr Jacqueline Mammerickx, a pioneer in seafloor mapping.

The Mammerickx Microplate rotation is revealed by a rotating pattern of grooves and hills that turn the topography of the ocean floor into a jagged landscape. These so-called "abyssal hills" record a sudden increase in crustal stress, dating the birth of the Himalayan Mountain Range to 47 million years ago.

The ongoing tectonic collision between the two continents produces geological stresses that build up along the Himalayas and leads to numerous earthquakes every year - but this latest finding indicates how stressed the Indian Plate became when its northern edge first collided with Eurasia.

The new research shows that 50 million years ago, India was travelling northwards at speeds of some 15 centimetres a year - close to the plate tectonic speed limit. Soon after it slammed into Eurasia crustal stresses along the mid-ocean ridge between India and Antarctica intensified to breaking point. A chunk of Antarctica's crust broke off and started rotating like a ball bearing, creating the newly discovered tectonic plate.

The discovery was made using satellite radar beam mapping from space, which measures the bumps and dips of the sea surface caused by water being attracted by submarine mountains and valleys, combined with conventional marine geophysical data.

Lead author Dr Matthews explains: "The age of the largest continental collision on Earth has long been controversial, with age-estimates ranging from at least 59 to 34 million years ago.

"Knowing this age is particularly important for understanding the link between the growth of mountain belts and major climate change."

Co-author Professor Muller said: "Dating this collision requires looking at a complex set of geological and geophysical data, and no doubt discussion about when this major collision first started will continue, but we have added a completely new, independent observation, which has not been previously used to unravel the birth of this collision.

"It is beyond doubt that the collision must have led to a major change in India's crustal stress field - that's why the plate fragmentation we mapped is a bit like a smoking gun for pinning down the collision age."

Co-author Professor Sandwell from the Scripps Institution of Oceanography said humans had explored and mapped remote lands extensively but the same was not true for our ocean basins.

"We have more detailed maps of Pluto than we do of most of our own planet because about 71 per cent of the Earth's surface is covered with water," Professor Sandwell said.

"Roughly 90% of the seafloor is uncharted by ships and it would take 200 ship-years of time to make a complete survey of the deep ocean outside continental shelves, at a cost of between two- to three billion US dollars.

"That's why advances in comparatively low-cost satellite technology are the key to charting the deep, relatively unknown abyssal plains, at the bottom of the ocean."

The paper 'Oceanic microplate formation records the onset of India-Eurasia collision' was be published in Earth and Planetary Science Letters last week.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Sydney
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
Climate change is moving mountains, research says
Cincinnati OH (SPX) Nov 10, 2015
For millions of years global climate change has altered the structure and internal movement of mountain ranges, but the resulting glacial development and erosion can in turn change a mountain's local climate. The degree of this cause-and-effect relationship has never been clearly observed, until now. Based on research led by University of Cincinnati geologist Eva Enkelmann in the St. Elias ... read more


TECTONICS
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

TECTONICS
Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

TECTONICS
Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

Magic plant discovery could lead to growing food in space

NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

TECTONICS
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

TECTONICS
US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

Space Station offers valuable lessons about life support systems

TECTONICS
Rocket launch from Hawaii carrying UH payload experiences anomaly

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

The 10th Arianespace mission of 2015 is "go" for its Ariane 5 liftoff next week

USAF releases first Booster Propulsion Technology Maturation BAA Award

TECTONICS
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

TECTONICS
Researchers create transplantation model for 3-D printed constructs

New ORNL catalyst features unsurpassed selectivity

Cyclic healing removes defects in metals while maintaining strength

Microscopy unveils lithium-rich transition metal oxides









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.