. 24/7 Space News .
SPACE MEDICINE
Mice Studies in Space Offer Clues on Bone Loss
by Staff Writers
Washington DC (SPX) May 26, 2016


NASA's rodent habitat, developed at Ames Research Center in Moffett Field, California, serves as a home away from home for mice on the International Space Station. Previous rodent experiments aboard space shuttles contributed to the development of new drugs now fighting osteoporosis on Earth. Image courtesy NASA. For a larger version of this image please go here.

Astronauts know their bodies will be tested during time spent on the International Space Station, from the 15 daily sunrises and sunsets wreaking havoc on their circadian rhythms to the lack of gravity that weakens bone density and muscle.

NASA is working to counteract these otherworldly challenges to enable long-term human exploration of space. For example, special lighting helps with sleep, and rigorous exercise helps keep astronauts' bodies strong.

But, frustratingly, bone loss continues to occur. With missions to Mars on the horizon, the agency is increasingly interested in potential new treatments to help protect astronauts' bodies.

"As scientists, we want to know what are the mechanisms that effect bone loss, what are the mechanisms that effect muscle loss," says Jacob Cohen, chief scientist at Ames Research Center. "We want to make sure we keep the crew as healthy as possible, so when they come back, they have a normal life."

A Model of Success
To advance understanding of how zero gravity affects bone density, scientists from Ames Research Center teamed up with BioServe Space Technologies, University of Colorado Boulder, and Amgen, of Thousand Oaks, California, for a series of three experiments conducted on mice.

Amgen was already working on treatments for osteoporosis, a disease that weakens bones in middle-aged women and older men. Louis Stodieck, a research professor at the University of Colorado Boulder and BioServe's director, put Amgen researchers in touch with Ames to design the rodent research in microgravity.

"The idea is, you can assess how things might occur in humans if you have good animal models that can predict what the human response is going to be," both to weightlessness and to any possible treatment to counteract it, Stodieck says.

During three separate space shuttle flights, groups of 15 mice, all about 10 weeks old, were sent into microgravity for two-week stints. Each time, one group was treated with a molecule designed to mitigate the loss of bone density and muscle strength, while a second group was given a placebo. Other mice got the same treatments but remained on Earth as a control group.

Make No Bones About It
Although mice and humans don't have identical physiology or biology, mice can still be used to help identify some basic mechanisms that are similar in humans and for early therapeutic studies. And since mice physiology, anatomy and genetics are well understood and they have much shorter lifespans, researchers can do many more and better controlled studies to learn about the potential effects of new treatments, which may help humans in the future.

One experiment focused on sclerostin, a naturally-secreted protein that tells the body to dial down the formation of new bone. The mice were injected with an antibody that blocks sclerostin, essentially telling the body to "let up on the brake," explains Chris Paszty, Amgen's research lead on the project.

That allowed the rodent bodies to keep regenerating bone tissue, resulting in increased mineral density and improved bone structure and strength.

The results were encouraging: the mice injected with the antibody showed increased bone formation and improved bone structure and bone strength, similar to what was seen in the mice who remained on Earth.

Amgen and partner UCB Pharma are working on a drug using the antibody that "is really going to shake things up," says Stodieck.

The drug "can substantially reverse losses that have made bone very fragile, as opposed to just preventing it from breaking down further," he explains. "It has the potential to help a lot of people who have gotten into a very weakened state."

Another of the molecules tested by Amgen on the space flights is already approved in a drug, helping women with osteoporosis prevent broken bones. Marketed as Prolia, the drug was developed in part using mice data from Amgen's first space experiment.

And all these results from four-footed critters will give NASA another possible tool to consider for future space voyages, to Mars and beyond.

To learn more about this NASA spinoff, read the original article from Spinoff 2016.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technology at NASA
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
Proposals to support astronaut health on long missions selected
Houston TX (SPX) May 06, 2016
NASA's Human Research Program and the National Space Biomedical Research Institute (NSBRI) will fund 27 proposals to help answer questions about astronaut health and performance during future long duration missions beyond low Earth orbit. The selected proposals will investigate the impact of the space environment on various aspects of astronaut health, including visual impairment, behavior ... read more


SPACE MEDICINE
SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

SPACE MEDICINE
Potential Habitats for Early Life on Mars

Are mystery Mars plumes caused by space weather?

Opportunity takes panorama; uses wheel to scuff soil

Ancient tsunami evidence on Mars reveals life potential

SPACE MEDICINE
Space travel now in a parachute soon available

Airbus Defence and Space starts Orion service module assembly

Interns Make Archived NASA Planetary Science Data More Accessible

Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

SPACE MEDICINE
China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

SPACE MEDICINE
International Space Cooperation Strongest in Times of Political Crises

Alexander Gerst to be Space Station commander

ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

SPACE MEDICINE
UK's First Spaceport Could Be Beside the Sea

SpaceX Return of Samples Marks Next Step in One-Year Mission Science

Arianespace's Soyuz is approved for its early morning liftoff on May 24

Fregat is fueled in Arianespace's FCube facility for Soyuz Flight VS15

SPACE MEDICINE
Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

SPACE MEDICINE
How the giant magnetoelectric effect occurs in bismuth ferrite

Rice de-icer gains anti-icing properties

Combining nanotextures with Leidenfrost effect for water repellency

Precise measurements on earth ensure NASA's spacecraft work in space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.