. 24/7 Space News .
TIME AND SPACE
Matter-antimatter asymmetry may interfere with the detection of neutrinos
by Staff Writers
Warsaw, Poland (SPX) May 29, 2018

illustration only

From the data collected by the LHCb detector at the Large Hadron Collider, it appears that the particles known as charm mesons and their antimatter counterparts are not produced in perfectly equal proportions. Physicists from Cracow have proposed their own explanation of this phenomenon and presented predictions related to it, about consequences that are particularly interesting for high-energy neutrino astronomy.

In the first moments after the Big Bang, the Universe was filled with equal amounts of particles and antiparticles. While it was cooling down, matter and antimatter began to merge and annihilate, turning into radiation. Why did some of this matter, from which the present Universe is built, survive this conflagration? In order to decipher this great mystery of modern science, physicists are trying to better understand all the mechanisms responsible for even the smallest disproportions in the production of particles and antiparticles. A group of scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow, associated with the LHCb experiment at the Large Hadron Collider in Geneva, recently looked into one of these processes: the asymmetry appearing at the birth of charm mesons and antimesons. Interestingly, the conclusions from the analysis could be of very tangible practical significance.

According to modern knowledge, quarks are the most important indivisible building blocks that make up matter. We know of six flavours of quarks: up (u), down (d), strange (s), charm (c), bottom (b) and top (t); each flavour also has its own antimatter counterpart (often marked with a dash above the letter, read as "bar"). Quarks generally are formed in quark-antiquark pairs. They are extremely sociable particles: almost immediately after coming into being, they bind into hadrons, or groups of two, three, and sometimes more quarks or antiquarks, bonded with gluons (i.e. particles transferring strong nuclear interactions). The process of combining quarks/antiquarks into complexes is called hadronization.

Unstable hadrons built from quark-antiquark pairs are called mesons. If one of the quarks in a meson is a charm quark, the particle is called a charm meson and is denoted by the letter D (or for the charm antiquark: D with a bar above it). A pair built of a charm quark and a down antiquark is a D+ meson, and one consisting of a charm antiquark and down quark is a D- meson.

In measurements conducted in the last quarter of a century, including recently as part of the LHCb experiment, an interesting asymmetry was noticed. It turned out that D+ and D- mesons are not always produced in exactly the same proportions. In the case of processes observed in LHCb, initiated in collisions of counter-current beams of high-energy protons, this asymmetry was small, less than one percent.

"Charm quarks are mainly formed during gluon collisions in so-called hard interactions, and after birth they hadronise into D mesons. We investigated another meson formation mechanism, known as unfavoured quark fragmentation. Here, the charm meson is created as a result of hadronization of a light (up, down, or strange) quark or antiquark. By means of the nuances of this mechanism, the asymmetry between kaons and antikaons, i.e. K+ and K- mesons, was explained earlier. Until now, however, it has not been investigated whether a similar mechanism could explain the asymmetry between the relatively massive D+ and D- mesons," says Dr. Rafal Maciula (IFJ PAN), the first author of the publication in the journal Physical Review D.

The LHCb detector mainly measures particles diverging from the point of collision of protons at large angles to the original direction of movement of these protons. According to the Cracow-based physicists, the asymmetry in the production of D mesons should be much greater if particles produced in a forward direction are taken into account, that is, along the direction of the proton beams. This means that the currently observed disproportion may be just the tip of an iceberg. Calculations suggest that in the case of "forward" collisions, unfavoured fragmentation (d, u, s " D) may be comparable to conventional fragmentation (c " D). As a result, the asymmetry between D+ and D- mesons may reach even a high percentage and also with lower collision energies than those currently occurring in the LHC.

The research of the physicists from the IFJ PAN may have far-reaching consequences for neutrino observatories, such as the IceCube Observatory in Antarctica. This detector, in which 49 scientific institutions from 12 countries collaborate, monitors a cubic kilometre of ice, located almost a kilometre below the surface, using thousands of photomultipliers. Photomultipliers track subtle light flashes, initiated by the interaction of ice-forming particles with neutrinos, elementary particles very weakly interacting with ordinary matter.

IceCube registers several hundred neutrinos a day. It is known that a large proportion of them are created in the Earth's atmosphere in processes initiated by cosmic rays and taking place with the participation of protons. Other neutrinos may come, for example, from the Earth's core or from the Sun. It is assumed, however, that neutrinos with significant energies have reached the detector directly from distant cosmic sources: supernovae or merging black holes or neutron stars.

"When interpreting data from the IceCube detector, the production of neutrinos in the Earth's atmosphere caused by ordinary cosmic radiation, including collisions involving protons, is taken into account. The thing is that some of these processes, resulting in the formation of neutrinos with high energies, take place with the participation of D mesons. Meanwhile, we show that the mechanism of production of these mesons in the atmosphere can be much more efficient than previously thought. So, if our assumptions are confirmed, some of the highly energetic neutrinos registered, now considered to be of cosmic origin, have actually appeared just above our heads and are disturbing the real picture of events in the depths of space," explains Prof. Antoni Szczurek (IFJ PAN).

When just the tip of the iceberg can be seen, inferences about what the rest of it looks like is more than risky. The model proposed by the Cracow-based physicists has the status of a hypothesis today. Perhaps it does fully describe the mechanism that occurs in reality. But it may also be that other processes are responsible for the asymmetry in the production of D mesons, maybe partially or even in their entirety.

"Fortunately, no other competitive proposal predicts such a clear increase in asymmetry in the production of D mesons at lower collision energies. So, to check our assumptions, it would suffice in the LHC accelerator to direct a single beam onto a stationary target, which would significantly reduce the collision energy. Our model therefore meets the criteria of very reliable science: it not only explains previous observations, but above all it can be rapidly verified. In addition, this can be done very cheaply!" sums up Prof. Szczurek.

Research Report: "D meson production asymmetry, unfavored fragmentation, and consequences for prompt atmospheric neutrino production"


Related Links
The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
ALMA and VLT find evidence for stars forming soon after Big Bang
Munich, Germany (SPX) May 17, 2018
An international team of astronomers used ALMA to observe a distant galaxy called MACS1149-JD1. They detected a very faint glow emitted by ionised oxygen in the galaxy. As this infrared light travelled across space, the expansion of the Universe stretched it to wavelengths more than ten times longer by the time it reached Earth and was detected by ALMA. The team inferred that the signal was emitted 13.3 billion years ago (or 500 million years after the Big Bang), making it the most distant oxygen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Trio reach Earth from ISS with football slated for World Cup

NASA selects US companies to advance space resource collection

NASA, Space Station Partners Announce Future Mission Crew Members

Breath of Life: Russia Working on System to Turn Cosmonauts' Breath Into Water

TIME AND SPACE
Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

Gilmour Space prepares for suborbital hybrid rocket launch

Watch live: SpaceX to launch SES-12 communications satellite

TIME AND SPACE
Opportunity Mars rover ready to study rock targets up close

New image shows exposed bedrock in Hale Crater on Mars

Embry-Riddle Student is Helping NASA Prepare for Trips to Mars

Red Planet rover set for extreme environment workout

TIME AND SPACE
Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

China's Queqiao satellite carries "large umbrella" into deep space

TIME AND SPACE
NASA Selects Small Business Technology Awards

Gogo and Iridium Partner to Deliver Best-in-Class Aircraft Connectivity

From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

TIME AND SPACE
Scientists discover new magnetic element

Firing up a new alloy

Space Traffic Management - Oversight, Licensing And Enforcement

Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

TIME AND SPACE
Distant moons may harbor life

NASA Dives Deep into the Search for Life

How microbes survive clean rooms and contaminate spacecraft

A simple mechanism could have been decisive for the development of life

TIME AND SPACE
'Surprising' methane dunes found on Pluto

Scientists reveal the secrets behind Pluto's dunes

Pluto may be giant comet made up of comets, study says

SwRI scientists introduce cosmochemical model for Pluto formation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.