. 24/7 Space News .
ENERGY TECH
Materials scientists uncover source of degradation in sodium batteries
by Staff Writers
Santa Barbara CA (SPX) Jul 22, 2019

file illustration

Batteries power our lives: we rely on them to keep our cell phones and laptops buzzing and our hybrid and electric cars on the road. But ever-increasing adoption of the most commonly used lithium-ion batteries may actually lead to increased cost and potential shortages of lithium - which is why sodium-ion batteries are being researched intensely as a possible replacement. They perform well, and sodium, an alkali metal closely related to lithium, is cheap and abundant.

The challenge? Sodium-ion batteries have shorter lifetimes than their lithium-based siblings.

Now, UC Santa Barbara computational materials scientist Chris Van de Walle and colleagues have uncovered a reason for this loss of capacity in sodium batteries: the unintended presence of hydrogen, which leads to degradation of the battery electrode. Van de Walle and co-authors Zhen Zhu and Hartwin Peelaers published their findings in the journal Chemistry of Materials.

"Hydrogen is commonly present during the fabrication of the cathode material, or it can be incorporated from the environment or from the electrolyte," said Zhu, who is now at Google.

"Hydrogen is known to strongly affect the properties of electronic materials, so we were curious about its effect on NaMnO2 (sodium manganese dioxide), a common cathode material for sodium-ion batteries." To study this, the researchers used computational techniques that are capable of predicting the structural and chemical effects that arise from the presence of impurities.

Professor Peelaers, now at the University of Kansas, described the key findings: "We quickly realized that hydrogen can very easily penetrate the material, and that its presence enables the manganese atoms to break loose from the manganese-oxide backbone that holds the material together. This removal of manganese is irreversible and leads to a decrease in capacity and, ultimately, degradation of the battery."

The studies were performed in Van De Walle's Computational Materials Group at UC Santa Barbara.

"Earlier research had shown that loss of manganese could take place at the interface with the electrolyte or could be associated with a phase transition, but it did not really identify a trigger," Van de Walle said.

"Our new results show that the loss of manganese can occur anywhere in the material, if hydrogen is present. Because hydrogen atoms are so small and reactive, hydrogen is a common contaminant in materials. Now that its detrimental impact has been flagged, measures can be taken during fabrication and encapsulation of the batteries to suppress incorporation of hydrogen, which should lead to better performance."

In fact, the researchers suspect that even the ubiquitous lithium-ion batteries may suffer from the ill effects of unintended hydrogen incorporation. Whether this causes fewer problems because fabrication methods are further advanced in this mature materials system, or because there is a fundamental reason for the lithium batteries to be more resistant to hydrogen is not clear at present, and will be an area of future research.


Related Links
University of California - Santa Barbara
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Highview Power Unveils CRYOBattery, World's First Giga-Scale Cryogenic Battery
London, UK (SPX) Jul 01, 2019
Highview Power, the global leader in long-duration energy storage solutions, is pleased to announce that it has developed a modular cryogenic energy storage system, the CRYOBattery, that is scalable up to multiple gigawatts of energy storage and can be located anywhere. This technology reaches a new benchmark for a levelized cost of storage (LCOS) of $140/MWh for a 10-hour, 200 MW/2 GWh system. Highview Power's cryogenic energy storage system is equivalent in performance to, and could potentially ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Lithuania introduces e-residency to boost foreign investment

Major shuffle at NASA in rush to meet Trump's moon deadline

Virgin Galactic seeks space tourism boost with market launch

Russian Federatsiya spacecraft crew could be killed in case of water landing

ENERGY TECH
Fuel leak halted blastoff for Indian rocket: reports

India's heavy rocket Bahubali gearing up for Moon

Vega rocket fails after takeoff in French Guiana

China to launch constellation with 72 satellites for Internet of Things

ENERGY TECH
Sustaining Life on Long-Term Crewed Missions Will Require Planetary Resources

InSight Uncovers the 'Mole' on Mars

Mars 2020 Rover Gets a Super Instrument

Methane vanishing on Mars

ENERGY TECH
From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

ENERGY TECH
Maxar begins production on Legion-class satellite for Ovzon

Maintaining large-scale satellite constellations using logistics approach

To be a rising star in the space economy, Australia should also look to the East

Israeli space tech firm hiSky expands to the UK

ENERGY TECH
Perseverance is key to NASA's advancement of alloys for bearings and gears

New developments with Chinese satellites over the past decade

NASA funds demo of 3D-Printed spacecraft parts made, assembled in orbit

New high-definition satellite radar can detect bridges at risk of collapse from space

ENERGY TECH
Astronomers expand cosmic "cheat sheet" in hunt for life

Ejected moons could help solve several astronomical puzzles

A desert portal to other worlds

Discovering Exoplanets with Gravitational Waves

ENERGY TECH
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.