. | . |
Discovering Exoplanets with Gravitational Waves by Staff Writers Potsdam, Germany (SPX) Jul 09, 2019
In a recent paper in Nature Astronomy, researchers from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) in Potsdam and from the French Alternative Energies and Atomic Energy Commission (CEA) in Saclay, Paris suggest how the planned space-based gravitational-wave observatory LISA can detect exoplanets orbiting white dwarf binaries everywhere in our Milky Way and in the nearby Magellanic Clouds. This new method will overcome certain limitations of current electromagnetic detection techniques and might allow LISA to detect planets down to 50 Earth masses. In the past two decades, our knowledge of exoplanets has grown significantly, and more than 4,000 planets orbiting a large variety of stars have been discovered. Up to now, the techniques used to find and characterize these systems are based on electromagnetic radiation and are limited to the solar neighborhood and some parts of our galaxy. In a recent paper published in Nature Astronomy, Dr. Nicola Tamanini, researcher at the AEI in Potsdam and his colleague Dr. Camilla Danielski, researcher at the CEA/Saclay (Paris) show how these limitations may be overcome by gravitational-wave astronomy. "We propose a method which uses gravitational waves to find exoplanets that orbit binary white dwarf stars", says Nicola Tamanini. White dwarfs are very old and small remnants of stars once similar to our Sun. "LISA will measure gravitational waves from thousands of white dwarf binaries. When a planet is orbiting such a pair of white dwarfs, the observed gravitational-wave pattern will look different compared to the one of a binary without a planet. This characteristic change in the gravitational waveforms will enable us to discover exoplanets."
Doppler-Shifted Gravitational Waves The advantage, however, of gravitational waves is that they are not affected by stellar activity, which can hamper electromagnetic discoveries. In their paper, Tamanini and Danielski show that the upcoming ESA mission LISA (Laser Interferometer Space Antenna), scheduled for launch in 2034, can detect Jupiter-mass exoplanets around white dwarf binaries everywhere in our galaxy, overcoming the limitations in distance of electromagnetic telescopes. Furthermore, they point out that LISA will have the potential to detect those exoplanets also in nearby galaxies, possibly leading to the discovery of the first extragalactic bound exoplanet. "LISA is going to target an exoplanet population yet completely unprobed," explains Tamanini. "From a theoretical perspective nothing prevents the presence of exoplanets around compact binary white dwarfs." If these systems exist and are found by LISA, scientists will obtain new data to further develop planetary evolution theory. They will better understand the conditions under which a planet can survive the stellar red-giant phase(s) and will also test the existence of a second generation of planets, i.e., planets that form after the red-giant phase. On the other hand, if LISA does not detect exoplanets orbiting white dwarf binaries, the scientists will be able to set constraints on the final stage of planetary evolution in the Milky Way.
Research Report: "The Gravitational-Wave Detection of Exoplanets Orbiting White Dwarf Binaries Using LISA," Nicola Tamanini and Camilla Danielski, 2019 July 8, Nature Astronomy
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |