Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ICE WORLD
Massive iceberg
by Staff Writers
Greenbelt MD (SPX) Jul 13, 2017


ESA's CryoSat mission measured the depth of the crack in the Larsen C ice shelf, which led to the birth of one of the largest icebergs on record. Carrying a radar altimeter to measure the surface height and thickness of the ice, the mission revealed that the crack was several tens of metres deep.

An iceberg about the size of the state of Delaware split off from Antarctica's Larsen C ice shelf sometime between July 10 and July 12.

The calving of the massive new iceberg was captured by the Moderate Resolution Imaging Spectroradiometer on NASA's Aqua satellite, and confirmed by the Visible Infrared Imaging Radiometer Suite instrument on the joint NASA/NOAA Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite. The final breakage was first reported by Project Midas, an Antarctic research project based in the United Kingdom.

Larsen C, a floating platform of glacial ice on the east side of the Antarctic Peninsula, is the fourth largest ice shelf ringing Earth's southernmost continent.

In 2014, a crack that had been slowly growing into the ice shelf for decades suddenly started to spread northwards, creating the nascent iceberg. Now that the close to 2,240 square-mile (5,800 square kilometers) chunk of ice has broken away, the Larsen C shelf area has shrunk by approximately 10 percent.

"The interesting thing is what happens next, how the remaining ice shelf responds," said Kelly Brunt, a glaciologist with NASA's Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland in College Park.

"Will the ice shelf weaken? Or possibly collapse, like its neighbors Larsen A and B? Will the glaciers behind the ice shelf accelerate and have a direct contribution to sea level rise? Or is this just a normal calving event?"

Ice shelves fringe 75 percent of the Antarctic ice sheet. One way to assess the health of ice sheets is to look at their balance: when an ice sheet is in balance, the ice gained through snowfall equals the ice lost through melting and iceberg calving. Even relatively large calving events, where tabular ice chunks the size of Manhattan or bigger calve from the seaward front of the shelf, can be considered normal if the ice sheet is in overall balance.

But sometimes ice sheets destabilize, either through the loss of a particularly big iceberg or through disintegration of an ice shelf, such as that of the Larsen A Ice Shelf in 1995 and the Larsen B Ice Shelf in 2002. When floating ice shelves disintegrate, they reduce the resistance to glacial flow and thus allow the grounded glaciers they were buttressing to significantly dump more ice into the ocean, raising sea levels.

Scientists have monitored the progression of the rift throughout the last year was using data from the European Space Agency Sentinel-1 satellites and thermal imagery from NASA's Landsat 8 spacecraft. Over the next months and years, researchers will monitor the response of Larsen C, and the glaciers that flow into it, through the use of satellite imagery, airborne surveys, automated geophysical instruments and associated field work.

In the case of this rift, scientists were worried about the possible loss of a pinning point that helped keep Larsen C stable. In a shallow part of the sea floor underneath the ice shelf, a bedrock protrusion, named the Bawden Ice Rise, has served as an anchor point for the floating shelf for many decades. Ultimately, the rift stopped short of separating from the protrusion.

"The remaining 90 percent of the ice shelf continues to be held in place by two pinning points: the Bawden Ice Rise to the north of the rift and the Gipps Ice Rise to the south," said Chris Shuman, a glaciologist with Goddard and the University of Maryland at Baltimore County. "So I just don't see any near-term signs that this calving event is going to lead to the collapse of the Larsen C ice shelf. But we will be watching closely for signs of further changes across the area."

The first available images of Larsen C are airborne photographs from the 1960s and an image from a US satellite captured in 1963. The rift that has produced the new iceberg was already identifiable in those pictures, along with a dozen other fractures.

The crack remained dormant for decades, stuck in a section of the ice shelf called a suture zone, an area where glaciers flowing into the ice shelf come together. Suture zones are complex and more heterogeneous than the rest of the ice shelf, containing ice with different properties and mechanical strengths, and therefore play an important role in controlling the rate at which rifts grow. In 2014, however, this particular crack started to rapidly grow and traverse the suture zones, leaving scientists perplexed.

"We don't currently know what changed in 2014 that allowed this rift to push through the suture zone and propagate into the main body of the ice shelf," said Dan McGrath, a glaciologist at Colorado State University who has been studying the Larsen C ice shelf since 2008.

McGrath said the growth of the crack, given our current understanding, is not directly linked to climate change.

"The Antarctic Peninsula has been one of the fastest warming places on the planet throughout the latter half of the 20th century. This warming has driven really profound environmental changes, including the collapse of Larsen A and B," McGrath said.

"But with the rift on Larsen C, we haven't made a direct connection with the warming climate. Still, there are definitely mechanisms by which this rift could be linked to climate change, most notably through warmer ocean waters eating away at the base of the shelf."

While the crack was growing, scientists had a hard time predicting when the nascent iceberg would break away. It's difficult because there are not enough measurements available on either the forces acting on the rift or the composition of the ice shelf.

Further, other poorly observed external factors, such as temperatures, winds, waves and ocean currents, might play an important role in rift growth. Still, this event has provided an important opportunity for researchers to study how ice shelves fracture, with important implications for other ice shelves.

The U.S. National Ice Center will monitor the trajectory of the new iceberg, which is likely to be named A-68. The currents around Antarctica generally dictate the path that the icebergs follow. In this case, the new berg is likely to follow a similar path to the icebergs produced by the collapse of Larsen B: north along the coast of the Peninsula, then northeast into the South Atlantic.

"It's very unlikely it will cause any trouble for navigation," Brunt said.

ICE WORLD
Krill hotspot fuels incredible biodiversity in Antarctic region
Corvallis OR (SPX) Jul 07, 2017
There are so many Antarctic krill in the Southern Ocean that the combined mass of these tiny aquatic organisms is more than that of the world's 7.5 billion human inhabitants. Scientists have long known about this important zooplankton species, but they haven't been certain why particular regions or "hotspots" in the Southern Ocean are so productive. One such hotspot exists off Anvers Islan ... read more

Related Links
Goddard Space Flight Center
Beyond the Ice Age


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Dutch project tests floating cities to seek more space

Creating Trends in Space: An Interview with NanoRacks CEO Jeffrey Manber

Trump offers bold space goals but fills in few details

Liftoff for Trump's bold space plans may have to wait

ICE WORLD
Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

Spiky ferrofluid thrusters can move satellites

On the road to creating an electrodeless spacecraft propulsion engine

ICE WORLD
Mars surface 'more uninhabitable' than thought: study

Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

ICE WORLD
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

ICE WORLD
Iridium Poised to Make Global Maritime Distress and Safety System History

100M Pound boost for UK space sector

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

ICE WORLD
Sorting complicated knots

Engineers find way to evaluate green roofs

Nature-inspired material uses liquid reinforcement

Feel the heat, one touch a time

ICE WORLD
More to Life Than the Habitable Zone

Gulf of Mexico tube worm is one of the longest-living animals in the world

Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation

Evidence discovered for two distinct giant planet populations

ICE WORLD
NASA spacecraft to fly over Jupiter's Great Red Spot

New Mysteries Surround New Horizons' Next Flyby Target

Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement