. 24/7 Space News .
Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation
by Staff Writers
Heidelberg, Germany (SPX) Jul 07, 2017

Image of the planet HIP 65426b (bottom left), produced with the SPHERE instrument. SPHERE has physically blocked out light from the central star (blocked-out region marked by circle) in order for the planets much weaker light to become detectable. The light received from the planet allows deductions about its properties - in this case the presence of water vapor and reddish clouds. Image: Chauvin et al. / SPHERE

Astronomers have discovered a rare, warm, massive Jupiter-like planet orbiting a star that is rotating extremely quickly. The discovery raises puzzling questions about planet formation - neither the planet's comparatively small mass nor its large distance from its host star are expected according to current models.

The observations that led to the discovery were made using the SPHERE instrument at ESO's very large telescope. The article describing the results has been accepted for publication in the journal Astronomy and Astrophysics.

Paraphrasing Isaac Asimov, scientific progress is announced not so much by "Eureka!" than by "Hm, this is odd!" The newly discovered planetary system HIP 65426 is a case in point: With a central star in ultrafast rotation, the absence of a gas disk one would have expected for a system 14 million years old and a comparatively light, distant planet, the system doesn't quite fit the existing models for how planetary systems come into being.

Planets are formed in gigantic disks of gas and dust that surround young stars. In the young planetary systems that have been found so far, including all of those observed with the SPHERE instrument, remnants of the disk are usually still visible. There is some degree of correlation in mass: massive stars tend to have more massive disks, forming more massive planets.

Enter HIP 65426b, a planet newly discovered by a group of astronomers that includes researchers from the Max Planck Institute for Astronomy (MPIA), and its host system. HIP 65426b was discovered with the SPHERE instrument at the Very Large Telescope at ESO's Paranal Observatory in Chile, which took a direct image of the planet.

The central star, HIP 65426, is part of what might be termed a stellar kindergarten: the Scorpius-Centaurus association which contains between 3000 and 5000 stars that formed at approximately the same time, at a distance of almost 400 light-years from Earth. Applying common astronomical techniques for dating stars both to HIP 65426 individually and to its stellar neighbors, it follows that HIP 65426 is only about 14 million years old.

Gael Chauvin of the University of Grenoble and the University of Chile, the lead author of the study, says: "We would expect a planetary system this young to still have a disk of dust, which could show up in observations. HIP 65426 does not have such a disk known for the moment - a first indication that this system doesn't quite fit our classical models of planetary formation."

An unusual planet
There is, however, the planet HIP 65426b. Comparing the direct observations with suitable models, HIP 65426b is a warm Jupiter-like planet, with a temperature of about 1300-1600 Kelvin (1000-1300 degrees Celsius), about 1.5 times the radius of Jupiter, and between 6 and 12 times Jupiter's mass. This would make HIP 65426b a gas giant, like Jupiter, with a solid core and thick layers of (mostly hydrogen) gas. Indeed, spectral examinations using SPHERE's spectrograph indicate the presence of water vapor and reddish clouds, similar to Jupiter's. The planet is far out, orbiting its host star at 100 astronomical units (100 times the average Earth-Sun distance, and more than three times Neptune's distance from the Sun).

Again, this represents various levels of oddness: Stars of the type of HIP 65426 (spectral class A2V) are expected to have about twice the mass of the Sun; it has long been assumed that such a star would have much more massive giant planets than the 6-12 Jupiter masses of HIP 65426b. On the other hand, such giant planets would not be expected as far out as HIP 65426b.

Last but not least, the host star HIP 65426 is special, as well: According to spectra taken with ESO's HARPS spectrograph, it rotates about 150 times as fast as the Sun. There is only one other star of similar type that is rotating as fast, and that one is part of a binary star system. In such a system, matter transfer from one star to the other can spin up the receiving star. How a single star could have sped up that much requires an explanation.

The origin of HIP 654426b: a system-wide drama?
So far, the astronomers can only speculate about the origin of the newly discovered system's peculiar properties. A possible scenario involves a regular planetary-scale drama: Initially, HIP 65426b would have formed much closer to the star (explaining its comparatively low mass), and at least one other massive body would have formed as well.

At some point, HIP 65426b and that other body would have come close enough for HIP 65426b to be catapulted outwards (up to its current great distance) and the other body moving inwards and merging with the star (causing the star's rapid rotation). The planets traversing the system could also have destabilized the disk, explaining why it did not survive long enough to be observed.

An alternative explanation would involve particular dynamics of the protoplanetary disk, with both the star and the planet forming by collapse at the same time by fragmentation - which would still require an explanation for why the disk was so short-lived to have vanished by now.

More definite explanations will have to wait for additional observations and simulations. They could have an impact on our understanding of how gas giants form, evolve, and possibly migrate, in general. This, in turn, is crucial for understanding the formation of planetary systems as a whole: the mass of the host star aside, most of the mass in a planetary system is carried by such giant planets, and the presence and properties of such planets has a decisive influence on the formation of their smaller cousins, such as Earth-like planets or Super-Earths.

For the SPHERE team, the discovery holds an additional special significance. This is the first planet discovered using the SPHERE instrument. MPIA director Thomas Henning, who is one of the fathers of the SPHERE instrument and a co-author of the present study, adds: "Direct images of exoplanets are still very rare, but they contain a wealth of information about planets such as HIP 65426b.

The analysis of the direct light of the planet allows us to constrain the composition of the planet's atmosphere with great confidence. " Images exist for less than 20 of the currently known 3600 exoplanets; the common methods of detection are all indirect, relying as they do on how the presence of a planet influences the host star's light. Direct imaging is very difficult, given that stars are so bright their light drowns out any light from surrounding planets. SPHERE has been designed to optimally suppress the stars' light, allowing for images and spectra of surrounding planets. So far, direct imaging is the only way to detect planets whose distance from their host star is large - planets such as the unusual HIP 65426b.

First discovery of an exoplanet with SPHERE VLT
Geneva, Switzerland (SPX) Jul 07, 2017
An international team of astronomers, including members of the University of Geneva (UNIGE), Switzerland, discovered an exoplanet by direct imaging using SPHERE, an instrument designed and developed by a consortium of 12 European institutes on the Very Large Telescope ESO, based in Chile. The instrument, which corrects in real time the terrestrial atmospheric turbulences and occults the li ... read more

Related Links
Max-Planck-Institute for Astronomy,
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Counting calories in space

NASA Offers Space Station as Catalyst for Discovery in Washington

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

Dutch project tests floating cities to seek more space

Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

Aerojet Rocketdyne tests Advanced Electric Propulsion System

Spiky ferrofluid thrusters can move satellites

After two delays, SpaceX launches broadband satellite for IntelSat

Curiosity Mars Rover Begins Study of Ridge Destination

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

LISA Pathfinder: bake, rattle and roll

100M Pound boost for UK space sector

Iridium Poised to Make Global Maritime Distress and Safety System History

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

WVU to develop software for future NASA Mars rovers, test 3-D printed foams on ISS

ANU invention may help to protect astronauts from radiation in space

Long Duration Experiments Reach 1,000th Day

Spacepath Communications Announces Innovative Frequency Converter Systems

Molecular Outflow Launched Beyond Disk Around Young Star

Hidden Stars May Make Planets Appear Smaller

Astronomers Track the Birth of a 'Super-Earth'

Big, shape-shifting animals from the dawn of time

Juno Completes Flyby over Jupiter's Great Red Spot

Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.