Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Making polymer chemistry 'click'
by Staff Writers
Berkeley CA (SPX) Jul 27, 2017


A researcher demonstrates bulk synthesis of a polysulfate, which relies on a chemical technique dubbed a SuFEx reaction. Image courtesy Berkeley Lab.

A team of researchers has developed a faster and easier way to make sulfur-containing polymers that will lower the cost of large-scale production. The achievement, published in Nature Chemistry and Angewandte Chemie, opens the door to creating new products from this class of polymers while producing far less hazardous waste.

The researchers' reaction technique, dubbed SuFEx for sulfur(VI) fluoride exchange, combined with a newly identified class of catalysts that speed up the reactions, could be used to make everything from water bottles and mobile phone cases to medical devices and bulletproof glass.

When a useful molecule is discovered, there are few reactions that chemists can use that are simple and efficient enough to meet the industrial production requirements for cost-effectively scaling up. In 2001, Nobel laureate K. Barry Sharpless introduced a new concept to organic chemistry known as "click chemistry," describing a suite of controllable, highly reactive reactions that are high-yielding and require little to no purification.

Following nature's example, click reactions follow simple protocols, use readily available starting materials, and work under mild reaction conditions with benign starting reagents. Click chemistry has become a valuable tool for generating large libraries of potentially useful compounds as industries look to discover new drugs and materials.

Scientists at Lawrence Berkeley National Laboratory's (Berkeley Lab) Molecular Foundry, a facility that specializes in nanoscale science, worked with a team led by Sharpless and Peng Wu, professors at the Scripps Research Institute (TSRI). The team created long chains of linked sulfur-containing molecules, termed polysulfates and polysulfonates, using a SuFEx click reaction.

"Click chemistry is a powerful tool for materials discovery, but synthetic chemists are often not well-equipped to characterize the polymers they create," said Yi Liu, director of the Organic Synthesis facility at the Molecular Foundry. "We can provide a broad spectrum of expertise and instrumentation that can expand the scope and impact of their research."

The SuFEx reaction, introduced as a new family of click reactions in 2014, reliably and quickly creates new chemical bonds, connecting compounds together with sulfates or sulfonates. While polysulfates have shown great potential as competitors to polycarbonates (strong plastics used for eyewear lenses and water bottles, for example), they have been rarely used for industrial applications due to a lack of reliable and easily scalable synthetic processes.

To overcome the challenges of mass-manufacturing polysulfates and polysulfonates, the TSRI team explored various catalysts and starting reagents to optimize the SuFEx reaction. They relied on their collaborators at the Molecular Foundry to assess physical properties and determine if the newly created polymers were thermally stable products.

Polymers are assembled from smaller molecules - like stringing a repeating pattern of beads on a necklace. In creating a polysulfonate "necklace" with SuFEx, the researchers identified ethenesulfonyl fluoride-amine/aniline and bisphenol ether as good "beads" to use and found that using bifluoride salt as a catalyst made the previously slow reaction "click" into action. Researchers found that the high efficiency of the reaction results in a remarkable 99 percent conversion, from starting reactants to products, in less than an hour.

Researchers found that the new reaction requires 100 to 1,000 times less catalyst than other known methods, resulting in significantly less hazardous waste. Bifluoride salts are also much less corrosive than previously used catalysts, allowing for a wider range of starting substrate "beads," which researchers said they hope could lead to its adoption for a range of industrial processes.

"There are many new polymers that haven't been widely used by industry before," said Liu. "By reducing waste and improving product purity, we lower the cost and make this reaction much more industry friendly."

The Molecular Foundry is a DOE Office of Science User Facility that provides free access to state of the art equipment and multidisciplinary expertise in nanoscale science to visiting scientists from all over the world.

Research paper

TECH SPACE
Multitasking monolayers
Nashville TN (SPX) Jul 25, 2017
Two-dimensional materials that can multitask. That is the result of a new process that naturally produces patterned monolayers that can act as a base for creating a wide variety of novel materials with dual optical, magnetic, catalytic or sensing capabilities. "Patterned materials open up the possibility of having two functionalities in a single material, such as catalyzing a chemica ... read more

Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronauts gear up for space with tough Russian training

ESA astronaut Paolo Nespoli starts third mission on Space Station

Voyager spacecraft still in communication 40 years out into the void

NextSTEP Partners Develop Ground Prototypes to Expand our Knowledge of Deep Space Habitats

TECH SPACE
Three Up, Three Down as NASA Tests RS-25 Flight Controller

Iran in 'successful' test of satellite-launch rocket

Aerojet Rocketdyne's RS-25 Flight Controller Goes Three for Three in SLS Test

India looks to more launches with new facility from 2018

TECH SPACE
Eclipse Balloons to Study Effect of Mars-Like Environment on Life

Portals to new worlds: Martian exploration near the North Pole

Opportunity enters Automode during solar conjunction pause

For Moratorium on Sending Commands to Mars, Blame the Sun

TECH SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

TECH SPACE
Iridium Announces Third Iridium NEXT Launch Date

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

A Final Farewell to LISA Pathfinder

TECH SPACE
Fundamental breakthrough in the future of designing materials

Multitasking monolayers

A new material emits white light when exposed to electricity

Writing with the electron beam: Now in silver

TECH SPACE
Breakthrough Starshot launches tiny spacecraft in quest for Alpha Centauri

Has Cassini found a universal driver for prebiotic chemistry at Titan?

An Earth-like atmosphere may not survive Proxima b's orbit

A New Search for Extrasolar Planets from the Arecibo Observatory

TECH SPACE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

NASA's New Horizons Team Strikes Gold in Argentina




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement