Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



EXO WORLDS
Limited phosphorus recycling can suppress a planet's biosphere
by Staff Writers
Seattle WA (SPX) Nov 29, 2017


As Earth's oxygen levels rose to near-modern levels over the last 800 million years, phosphorus levels also increased, according to modeling led by the UW's Michael Kipp and others. Accordingly, Kipp said, large phosphate deposits show up in abundance in the rock record at about this time. This is a Wyoming portion of The Phosphoria Formation, a deposit that stretches across several states in the western United States and is the largest source of phosphorus fertilizer in the country. The photo shows layers of phosphorus that are 10s of meters thick, shales that contain high concentrations of organic carbon and phosphorus. Kipp said many such deposits are documented over time but are rare in the Precambrian era. "Thus, they might represent a conspicuous temporal record of limited phosphorus recycling."Michael Kipp

The amount of biomass - life - in Earth's ancient oceans may have been limited due to low recycling of the key nutrient phosphorus, according to new research by the University of Washington and the University of St. Andrews in Scotland.

The research, published online Nov. 22 in the journal Science Advances, also comments on the role of volcanism in supporting Earth's early biosphere - and may even apply to the search for life on other worlds.

The paper's lead author is Michael Kipp, a UW doctoral student in Earth and space sciences; coauthor is Eva Stueken, a research fellow at the University of St. Andrews and former UW postdoctoral researcher. Roger Buick, UW professor of Earth and space sciences, advised the researchers.

Their aim, Kipp said, was to use theoretical modeling to study how ocean phosphorus levels have changed throughout Earth's history.

"We were interested in phosphorus because it is thought to be the nutrient that limits the amount of life there is in the ocean, along with carbon and nitrogen," said Kipp. "You change the relative amount of those and you change, basically, the amount of biological productivity."

Kipp said their model shows the ability of phosphorus to be recycled in the ancient ocean "was much lower than today, maybe on the order of 10 times less."

All life needs abundant food to thrive, and the chemical element phosphorus - which washes into the ocean from rivers as phosphate - is a key nutrient. Once in the ocean, phosphorus gets recycled several times as organisms such as plankton or eukaryotic algae that "eat" it are in turn consumed by other organisms.

"As these organisms use the phosphorus, they in turn get grazed upon, or they die and other bacteria decompose their organic matter," said Kipp, "and they release some of that phosphorus back into the ocean. It actually cycles through several times," allowing the liberated phosphorus to build up in the ocean. The amount of recycling is a key control on the amount of total phosphorus in the ocean, which in turn supports life.

Buick explained: "Every gardener knows that their plants grow only small and scraggly without phosphate fertilizer. The same applies for photosynthetic life in the oceans, where the phosphate 'fertilizer' comes largely from phosphorus liberated by the degradation of dead plankton."

But all of this requires oxygen. In today's oxygen-rich oceans, nearly all phosphorus gets recycled in this way and little falls to the ocean floor. Several billion years ago, in the Precambrian era, however, there was little or no oxygen in the environment.

"There are some alternatives to oxygen that certain bacteria could use, said co-author Stueken. "Some bacteria can digest food using sulfate. Others use iron oxides." Sulfate, she said, was the most important control on phosphorus recycling in the Precambrian era.

"Our analysis shows that these alternative pathways were the dominant route of phosphorus recycling in the Precambrian, when oxygen was very low," Stueken said. "However, they are much less effective than digestion with oxygen, meaning that only a smaller amount of biomass could be digested. As a consequence, much less phosphorus would have been recycled, and therefore total biological productivity would have been suppressed relative to today."

Kipp likened early Earth's low-oxygen ocean to a kind of "canned" environment, with oxygen sealed out: "It's a closed system. If you go back to the early Precambrian oceans, there's not very much going on in terms of biological activity."

Stueken noted that volcanoes were the biggest source of sulfate in the Precambrian, unlike now, and so they were necessary for sustaining a significant biosphere by enabling phosphorus recycling.

In fact, minus such volcanic sulfate, Stueken said, Earth's biosphere would have been very small, and may not have survived over billions of years. The findings, then, illustrate "how strongly life is tied to fundamental geological processes such as volcanism on the early Earth," she said.

Kipp and Stueken's modeling may have implications as well for the search for life beyond Earth.

Astronomers will use upcoming ground- and space-based telescopes such as the James Webb Space Telescope, set for launch in 2019, to look for the impact of a marine biosphere, as Earth has, on a planet's atmosphere. But low phosphorus, the researchers say, could cause an inhabited world to appear uninhabited - making a sort of "false negative."

Kipp said, "If there is less life - basically, less photosynthetic output - it's harder to accumulate atmospheric oxygen than if you had modern phosphorus levels and production rates. This could mean that some planets might appear to be uninhabited due to their lack of oxygen, but in reality they have biospheres that are limited in extent due to low phosphorus availability.

"These 'false negatives' are one of the biggest challenges facing us in the search for life elsewhere," said Victoria Meadows, UW astronomy professor and principal investigator for the NASA Astrobiology Institute's Virtual Planetary Laboratory, based at the UW. "But research on early Earth's environments increases our chance of success by revealing processes and planetary properties that guide our search for life on nearby exoplanets."

Research Report: "Biomass Recycling and Earth's Early Phosphorus Cycle," Michael A. Kipp and Eva E. Stueken, 2017 Nov. 22, Science Advances

EXO WORLDS
Scientists identify key factors that help microbes thrive in harsh environments
College Park MD (SPX) Nov 29, 2017
Three new studies by University of Maryland School of Medicine (UMSOM) scientists have identified key factors that help microbes survive in harsh environments. The results, which have implications for biotechnology and understanding life in extreme conditions, were in the Proceedings of the National Academy Of Sciences (PNAS), Astrobiology, and the International Journal of Astrobiology. "O ... read more

Related Links
University of Washington
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Building for a future in space: An interview with Dava Newman and Gui Trotti

Space Farms: 'Mark Watney in The Martian Was Right to Add Poop to the Soil'

New motion sensors major step towards cheaper wearable technology

Does the Outer Space Treaty at 50 need a rethink

EXO WORLDS
ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

Mechanisms are critical to all space vehicles

Russia loses contact with satellite after launch from new spaceport

EXO WORLDS
Earthworms can reproduce in Mars-like soil

Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Scientists developed a new sensor for future missions to the Moon and Mars

EXO WORLDS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

EXO WORLDS
Going green to the Red Planet

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

EXO WORLDS
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

EXO WORLDS
Scientists identify key factors that help microbes thrive in harsh environments

Exoplanet Has Smothering Stratosphere Without Water

Scientists study Earth's earliest life forms in Nevada hot spring

Traces of life on nearest exoplanets may be hidden in equatorial trap

EXO WORLDS
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement