. 24/7 Space News .
TIME AND SPACE
Latest experiment at Large Hadron Collider reports first results
by Staff Writers
Boston MA (SPX) Oct 15, 2015


File image.

After a two-year hiatus, the Large Hadron Collider, the largest and most powerful particle accelerator in the world, began its second run of experiments in June, smashing together subatomic particles at 13 teraelectronvolts (TeV) - the highest energy ever achieved in a laboratory. Physicists hope that such high-energy collisions may produce completely new particles, and potentially simulate the conditions that were seen in the early universe.

In a paper to appear in the journal Physics Letters B, the Compact Muon Solenoid (CMS) collaboration at the European Organization for Nuclear Research (CERN) reports on the run's very first particle collisions, and describes what an average collision between two protons looks like at 13 TeV. One of the study leaders is MIT assistant professor of physics Yen-Jie Lee, who leads MIT's Relativistic Heavy Ion Group, together with physics professors Gunther Roland and Bolek Wyslouch.

In the experimental run, researchers sent two proton beams hurtling in opposite directions around the collider at close to the speed of light. Each beam contained 476 bunches of 100 billion protons, with collisions between protons occurring every 50 nanoseconds. The team analyzed 20 million "snapshots" of the interacting proton beams, and identified 150,000 events containing proton-proton collisions.

For each collision that the researchers identified, they determined the number and angle of particles scattered from the colliding protons. The average proton collision produced about 22 charged particles known as hadrons, which were mainly scattered along the transverse plane, immediately around the main collision point.

Compared with the collider's first run, at an energy intensity of 7 TeV, the recent experiment at 13 TeV produced 30 percent more particles per collision.

Lee says the results support the theory that higher-energy collisions may increase the chance of finding new particles. The results also provide a precise picture of a typical proton collision - a picture that may help scientists sift through average events looking for atypical particles.

"At this high intensity, we will observe hundreds of millions of collisions each second," Lee says. "But the problem is, almost all of these collisions are typical background events. You really need to understand the background well, so you can separate it from the signals for new physics effects. Now we've prepared ourselves for the potential discovery of new particles."

Shrinking the uncertainty of tiny collisions
Normally, 13 TeV is not a large amount of energy - about that expended by a flying mosquito. But when that energy is packed into a single proton, less than a trillionth the size of a mosquito, that particle's energy density becomes enormous. When two such energy-packed protons smash into each other, they can knock off constituents from each proton - either quarks or gluons - that may, in turn, interact to produce entirely new particles.

Predicting the number of particles produced by a proton collision could help scientists determine the probability of detecting a new particle. However, existing models generate predictions with an uncertainty of 30 to 40 percent. That means that for high-energy collisions that produce a large number of particles, the uncertainty of detecting rare particles can be a considerable problem.

"For high-luminosity runs, you might have up to 100 collisions, and the uncertainty of the background level, based on existing models, would be very big," Lee says.

To shrink this uncertainty and more precisely count the number of particles produced in an average proton collision, Lee and his team used the Large Hadron Collider's CMS detector. The detector is built around a massive magnet that can generate a field that's 100,000 times stronger than the Earth's magnetic field.

Typically, a magnetic field acts to bend charged particles that are produced by proton collisions. This bending allows scientists to measure a particle's momentum. However, an average collision typically produces lightweight particles with very low momentum - particles that, in a magnetic field, end up coiling their way toward the main collider's beam pipe, instead of bending toward the CMS detector.

To count these charged, lightweight particles, the scientists analyzed the data with the detector's magnet off. While they couldn't measure the particles' momentum, they could precisely count the number of charged particles, and measure the angles at which they arrived at the detector. The measurements, Lee says, give a more accurate picture of an average proton collision, compared with existing theoretical models.

"Our measurement actually shrinks the uncertainty dramatically, to just a few percent," Lee says.

Simulating the early universe
Knowing what a typical proton collision looks like will help scientists set the collider to essentially see through the background of average events, to more efficiently detect rare particles.

Lee says the new results may also have a significant impact on the study of the hot and dense medium from the early universe. In addition to proton collisions, scientists also plan to study the highest-energy collisions of lead ions, each of which contain 208 protons and neutrons. When accelerated in a collider, lead ions flatten into disks due to a force called the Lorentz contraction. When smashed together, lead ions can generate hundreds of interactions between protons and produce an extremely dense medium that is thought to mimic the conditions of space just after the Big Bang. In this way, the Large Hadron Collider experiment could potentially simulate the condition of the very first moments of the early universe.

"One microsecond after the Big Bang, the universe was very dense and hot - about 1 trillion degrees," Lee says. "With lead ion collisions, we can reproduce the early universe in a 'small bang.' If we can understand what one proton collision looks like, we may be able to get some more insights about what will happen when hundreds of them occur at the same time. Then we can see what we can learn about the early universe."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
A resonator for electrons
Zurich, Switzerland (SPX) Oct 15, 2015
More than two thousand years ago the Greek inventor and philosopher Archimedes already came up with the idea of using a curved mirror to reflect light in such a way as to focus it into a point - legend has it that he used this technique to set fire to the ships of the Roman enemies. Today such curved or parabolic mirrors are used in a host of technical applications ranging from satellite dishes ... read more


TIME AND SPACE
Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

TIME AND SPACE
Opportunity parked for solar panels to charge up for winter

Pebbles on Mars likely traveled tens of miles down a riverbed

To save on weight, a detour to the moon is the best route to Mars

Opportunity working at 'Marathon Valley' before winter relocation

TIME AND SPACE
Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

NASA, Israel ink space cooperation agreement

Magnetic sail tech alternative to rocket-based space travel

NASA Appoints Mark Kirasich To Serve As Orion Program Manager

TIME AND SPACE
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

TIME AND SPACE
Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

TIME AND SPACE
ILS Proton Launches Turksat 4B

Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

TIME AND SPACE
Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

TIME AND SPACE
Hot stuff: Magnetic domain walls

Colombia receives Northrop Grumman AN/TPS-78 radar

Patterning oxide nanopillars at the atomic scale by phase transformation

Methodology could lead to more sustainable manufacturing systems









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.