. 24/7 Space News .
Last Large Piece Of ATLAS Detector Lowered Underground

The Large Hadron Collider (LHC).
by Staff Writers
Waltham MA (SPX) Mar 05, 2008
Brandeis researchers in the U.S. ATLAS collaboration have joined colleagues around the world to celebrate a pivotal landmark in the construction of the Large Hadron Collider (LHC) - the lowering of the final piece of the ATLAS particle detector into the underground collision hall at CERN in Geneva, Switzerland.

Experiments conducted at this revolutionary LHC facility, poised to become the world's most powerful particle accelerator, may help scientists unravel some of the deepest mysteries in particle physics. The U.S. branch of the collaboration (U.S. ATLAS), based out of the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, built and delivered several key elements of the ATLAS detector.

The last piece of ATLAS lowered into the ATLAS experimental cavern is one of two elements known as the small wheels. The two ATLAS small wheels, though little in comparison to the rest of the ATLAS detector, are each about 30 feet in diameter and weigh 100 tons. The wheels are covered with sensitive detectors that will be used to identify and measure the momentum of subatomic particles called muons that are created in collisions at the LHC.

The entire detector system has an area equal to three football fields, consisting of 100 million independent electronic channels. As charged particles pass through a magnetic field created by superconducting magnets, this detector has the ability to accurately track them to the precision of the width of a human hair.

Over the last fourteen years, the Brandeis high-energy physics group has been heavily involved in the mechanical design and assembly of the small wheel, as well as the production of the muon measurement chambers and the alignment of the endcap muon system.

"We believe that muons are signatures of interesting events," says Branadeis physicist James Bensinger. If enough muon-related events are detected, it's entirely likely that high-energy particle physics could cross the threshold to a new era of understanding, perhaps moving closer to that obscure "theory of everything."

"We're proud of the teams involved in this international scientific endeavor - one of the largest collaborative efforts ever attempted in the physical sciences," said Dennis Kovar, acting associate director for High Energy Physics in DOE's Office of Science. "This technical landmark brings us a huge step closer to unveiling a new level of understanding of our universe."

Of the almost 2,100 participants in the ATLAS collaboration, about 420 are U.S. physicists, engineers, and graduate students. Hailing from 38 universities and four national laboratories, these U.S. collaborators are supported by DOE and the National Science Foundation (NSF).

"This is a remarkable milestone in the complicated construction of the ATLAS detector," said Joseph Dehmer, director of the Physics Division at the NSF. "The LHC is one of the most exciting physics experiments for this decade and beyond. We are impressed by the hundreds of U.S. university and national laboratory scientists who are working hard to make this extraordinary project a reality. We look forward to the groundbreaking results that are now just around the corner."

Involving the work of 450 physicists from 48 institutions around the world, lowering this last small wheel marks the end of a decade of planning and construction of the muon spectrometer system.

"For me personally, this is the culmination of many years of work designing, planning, and installing the mechanical structure," said Vincent Hedberg, who led the development of the small wheel support system. "For ATLAS as a whole, the last large detector is finally in place."

Brookhaven National Laboratory led the development of the 32 muon detectors in the inner ring of the wheels, working with Stony Brook University, the University of Arizona, and the University of California, Irvine. In addition, numerous U.S. universities built the 64 precision muon chambers on the small wheels; these include: the University of Michigan, University of Washington, Seattle, and the Boston Muon Consortium, which involves Boston University, Brandeis University, Harvard University, the Massachusetts Institute of Technology, and Tufts University.

"These fragile detectors comprise the largest measuring device ever constructed for high-energy physics," said George Mikenberg, ATLAS muon project leader.

Experiments at the LHC will allow physicists to take a big leap in their exploration of the universe. The ATLAS detector may help its scientists unravel some of the deepest mysteries in particle physics such as the origin of mass or the identification of dark matter. The ATLAS collaboration will now focus on commissioning the detector in preparation for the start-up of the LHC this summer.

Community
Email This Article
Comment On This Article

Related Links
Brandeis University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Sandia Weighs In On New Definition For Kilogram
Albuquerque NM (SPX) Feb 29, 2008
The kilogram is losing weight and many international scientists, including some at Sandia National Laboratories, agree that it's time to redefine it. Scientists are hoping to redefine the kilogram by basing it on standards of universal constants rather than on an artifact standard.







  • Faster Than A Speeding Bullet: Why We Track The Trash
  • Jules Verne ATV Atop Launcher
  • Killer Electrons Surf Celestial Tsunamis
  • NASA adds technologies Web feature

  • Tenacious Spirit Might See Rover Through Martian Winter
  • New Tool Enlisted In The Search For Life On Mars
  • Liquid Water Found Flowing On Mars - Not Yet
  • NASA Spacecraft Photographs Avalanches On Mars

  • ILS To Launch Two SIRIUS Radio Satellite On Proton Breeze M
  • Ariane 5 Star One C2 Satellite Launch Campaign Underway
  • ILS Announces Contract To Launch Two Sirius Satellite Radio Spacecraft On Proton Breeze M
  • Arianespace Prepares For Its First Two Ariane 5 Missions Of 2008

  • Falcon Investigates Pollution From The Dakar Metropolis Into Desert Dust Layers
  • NASA Extends Mission For Ball Aerospace-Built ICESat
  • CIRA Scientist Among Authors Of Book Celebrating 50 Years Of Earth Observations From Space
  • Indonesia To Develop New EO Satellite

  • New Horizons Crosses 9 AU
  • ASU Research Solves Solar System Quandary
  • Happy Second Birthday New Horizons
  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt

  • The Last Confessions Of A Dying Star
  • Small Helper Stars Needed For Massive Star Formation
  • Dirty Space And Supernovae
  • US Experiment Takes The Lead In The Competitive Race To Find Dark Matter

  • Preparation For The Next Lunar Landing Leaps Across The Generation Gap
  • NASA Collaborates With Astronomers In Search For Moon Water
  • NASA shows off a moon robot
  • Northrop Grumman Integrating LCROSS Instruments

  • locr And Skyhook Wireless To Jumpstart Geo-Tagging
  • Positiontracer - A Bodyguard On Your Mobile Phone
  • Columbus Brings New Personal Navigation Solution To Outdoor Tourism
  • Reality Glooms High Over Russian GLONASS GPS Plans Part One

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement