Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















IRON AND ICE
Landslides on Ceres Reflect Ice Content
by Staff Writers
Pasadena CA (JPL) Apr 20, 2017


NASA's Dawn spacecraft has revealed many landslides on Ceres, which researchers interpret to have been shaped by a significant amount of water ice. Shown are examples of Type I (left), Type II (middle) and Type III (right). Image courtesy NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. For a larger version of this image please go here.

As NASA's Dawn spacecraft continues exploring Ceres, evidence mounts that the enigmatic dwarf planet retains a significant amount of water ice. A new study in the journal Nature Geoscience adds to this picture, showing how ice may have shaped the variety of landslides seen on Ceres today.

"Images from Dawn show that landslides, many of which are similar to those seen on Earth, are very common on Ceres, and further the case that Ceres has a lot of water ice involved in its structure," said Britney Schmidt, who led the study. She is an associate of the Dawn science team and assistant professor at Georgia Institute of Technology in Atlanta.

Schmidt and colleagues identified three types of landslides. Type I, which are relatively round and large, have thick "toes" at their ends. They look similar to rock glaciers and icy landslides on Earth.

Type I landslides are mostly found at high latitudes on Ceres, which is also where the most ice is thought to reside just beneath the surface, suggesting they involve the most ice of any of the flow features. Three small Type 1 flows are found in Oxo Crater, a tiny bright crater in the northern hemisphere that hosts an ice deposit at the surface.

Type II features are often thinner and longer than Type I, and are the most common type of landslide on Ceres. The landslide deposits appear similar to those left behind by avalanches seen on Earth.

Ceres' Type III features may involve a brief melting of some of the ice within the soil-like regolith, causing the material to flow like mud before refreezing. These landslides are always associated with large impact craters, and may have formed when an impact event melts subsurface ice on Ceres. These features have similar appearances to ejected material from craters in the icy regions of Mars and on Jupiter's moon Ganymede.

"The locations of these different types of features reinforces the idea that the shallow subsurface of Ceres is a mixture of ice and rock, and that ice is most plentiful near the surface at the poles," Schmidt said.

Scientists were also surprised at just how many landslides have occurred on Ceres in general. About 20 to 30 percent of craters greater than 6 miles (10 kilometers) wide have some type of landslide associated with them. Such widespread "ground ice" features, which formed from of a mixture of rock and ice, had only been observed before on Earth and Mars.

Implications and Future Observations
Based on the shape and distribution of landslides on Ceres, study authors estimate that the ice in the upper few tens of meters of Ceres may range from 10 percent to 50 percent by volume.

"These kinds of flows are not seen on bodies such as Vesta, which Dawn studied from 2011 to 2012, because the regolith is devoid of water," said Carol Raymond, deputy principal investigator for the Dawn mission, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

Now in its extended mission phase, Dawn is using its ion engine to swivel the plane of its orbit around Ceres to prepare for observations from a new orbit and orientation. At the end of April, the spacecraft will be directly between the sun and the mysterious Occator Crater. In this geometry, Dawn may deliver new insights about the reflective material of Ceres' most famous "bright spot," the highly reflective center of Occator that has been named Cerealia Facula.

IRON AND ICE
Close call: When asteroids whisk past Earth
Paris (AFP) April 19, 2017
A peanut-shaped asteroid 1.3 kilometres (3,280 feet) across streaked past Earth on Wednesday, giving astronomers a rare chance to check out a big space rock up close. But not too close. Dubbed 2014-JO25, the asteroid came nearest at 12:20 GMT and is now hurtling away from the centre of our solar system, said Ian Carnelli, an astronomer from the European Space Agency (ESA). "It does ... read more

Related Links
Dawn at NASA
Asteroid and Comet Mission News, Science and Technology

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russian, American two-man crew reaches ISS

NASA Engages the Next Generation with HUNCH

Cygnus docks with ISS, delivering 28 Cubesats from multiple customers

Orbital cargo ship arrives at space station

IRON AND ICE
Alaska Aerospace Pursuing Asian Small Satellite Launch Market

45th SW supports Atlas V OA-7 launch

Russia and US woo Brazil, hope to use advantageous base for space launches

Creation of carrier rocket for Baiterek Space Complex to cost Russia $500Mln

IRON AND ICE
Researchers Produce Detailed Map of Potential Mars Rover Landing Site

Mars Rover Opportunity Leaves 'Tribulation'

Mars spacecraft's first missions face delays, NASA says

France, Japan aim to land probe on Mars moon

IRON AND ICE
China launches first cargo spacecraft Tianzhou-1

Are human space babies conceivable?

China's first cargo spacecraft docks with space lab

Tianzhou-1 space truck soars into orbit

IRON AND ICE
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

IRON AND ICE
'Twist and shine': Development of a new photoluminescent sensor material

Japanese Cloud Radar payload ready for final spacecraft assembly

Leybold simplifies repairs and maintenance through Augmented Reality

Tiny Probes Hold Big Promise for Future NASA Missions

IRON AND ICE
Detecting Life in the Driest Place on Earth

Oceans Galore: Most Habitable Planets May Lack Dry Land

Newly Discovered Exoplanet May be Best Candidate in Search for Signs of Life

Breakthrough Listen Publishes Initial Results

IRON AND ICE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement