Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















WATER WORLD
Landmark global scale study reveals potential future impact of ocean acidification
by Staff Writers
Plymouth, UK (SPX) Jan 10, 2017


File image.

Ocean Acidification and the extent to which marine species are able to deal with low pH levels in the Earth's seas, could have a significant influence on shifting the distribution of marine animals in response to climate warming.

This is one the findings of a landmark new study that has taken a first-ever global scale integrative approach to the topic, bringing together population genetics, growth, shell mineralogy and metabolic data for marine snails found in the North Atlantic.

Published in this month's Nature Communications, the report, Regional adaptation defines sensitivity to future ocean acidification, reveals that populations at the northern and southern range edges are the most sensitive to ocean acidification, and the least likely to be able deal with significant implications for biogeography and diversity.

Scientists at the University of Quebec in Rimouski (UQAR), Canada, the University of Plymouth, the Plymouth Marine Laboratory, and the University of Birmingham, launched the project in 2010 with funding from a number of sources, including the Natural Environment Research Council's UK Ocean Acidification Research Programme.

Project lead Dr Piero Calosi, from the Department of Biology, Chemistry and Geography at UQAR, said: "It is well established that an organism's physiological response to temperature is a major determinant of species distributions, which in turn can dictate the sensitivity of populations and species to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification, will help shape species' distributions in the future."

The team sampled the common periwinkle Littorina littorea - an intertidal snail that has a wide latitudinal distribution - from six populations living along the European coastline of the North Atlantic, including warm temperate, cold temperate and subpolar regions.

Specimens were transported to the Marine Biology and Ecology Research Centre at the University of Plymouth and kept in aquaria containing either sea water representing current (pH 8.0) levels, or low pH predicted to occur for the year 2100 (pH 7.6).

Upon analysis, the scientists discovered a range of impacts including markedly higher rates of shell dissolution and degradation across all of the specimens maintained in the low pH condition, caused by the corrosive water conditions. This was particularly marked in the snails from the subpolar region, which have genetically adapted to the colder waters.

Where populations exhibited clear differences was in their metabolic responses to low pH conditions. The snails from warm temperate populations were found to decrease their metabolism as a trade-off between maintaining their physiological systems and their ability to grow, ultimately limiting the latter.

Snails from the subpolar populations maintained their metabolic rates, but increased the amount of energy they put into shell mineralization. And the snails taken from the cold temperate waters were able to increase their metabolic rate, fuelling the maintenance of their growth and of their physiological systems to a better level than the other populations.

Dr Simon Rundle, from the School of Biological and Marine Sciences at University of Plymouth, said: "Such latitudinal differences in the metabolic 'strategies' may, in part, help explain the observed reduced growth towards range edges. Exposure to ocean acidification was shown to cause a reduction in the energy metabolism of the snails, and such reductions can lead to a reallocation of the energy budget away from fundamental fitness-related functions."

Professor Stephen Widdicombe, Head of Science in Marine Ecology and Biodiversity at Plymouth Marine Laboratory, said: "Together, the findings of this study suggest that the relative sensitivity of different populations of L. littorea to future ocean acidification are likely to vary considerably across its geographical range of extension in the North East Atlantic through local and regional adaptation, with populations closer to the range edges being most sensitive."

Dr Lucy Millicent Turner, from the University of Plymouth, added: "If ocean acidification selects against sensitive, range-edge genotypes, it could cause a reduction of genetic diversity levels that could have far-reaching consequences for the ability of these populations to respond and further adapt to other local and global stressors."

The results, say the authors, also demonstrate the risks of using single population studies when aiming to predict species' and community responses to global environmental drivers.

"We may be currently over- or underestimating the impact of different environmental changes in different climatic regions," concludes Dr Calosi, "with this having important implications for the development of directives and policies to promote the preservation of marine biodiversity under the ongoing global change."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Plymouth
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Are tiny grazers the new hope for Caribbean reefs
Panama City, Panama (SPX) Jan 10, 2017
Thirty years ago a mysterious disease wiped out long-spined black sea urchins across the Caribbean, leading to massive algal overgrowth that smothered already overfished coral reefs. Now, marine biologists at the Smithsonian Tropical Research Institute (STRI) report that smaller sea urchins and parrotfish may be taking the place of the large sea urchins, restoring the balance on degraded reefs. ... read more


WATER WORLD
Emerging tech aims to improve life for handicapped

Hubble provides interstellar road map for Voyagers' galactic trek

NASA Assigns Upcoming Space Station Crew Members

Tech outlook dampened by political uncertainty

WATER WORLD
Arianespace to launch JCSAT-17 for SKY Perfect JSAT

Arianespace looks to the future with confidence

Mission contracts secure Commercial Crew operations for coming years

SpaceX concluded accident investigation, to start launching rockets again

WATER WORLD
Hues in a Crater Slope

3-D images reveal features of Martian polar ice caps

Odyssey recovering from precautionary pause in activity

Small Troughs Growing on Mars May Become 'Spiders'

WATER WORLD
China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

WATER WORLD
OneWeb announces key funding from SoftBank Group and other investors

Airbus DS and Energia eye new medium-class satellite platform

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

WATER WORLD
Scientists make grocery bags out of shrimp shells

New active filaments mimic biology to transport nano-cargo

Manufacturing platform makes intricate biocompatible micromachines

Rice U probes ways to turn cement's weakness to strength

WATER WORLD
Hubble detects 'exocomets' taking the plunge into a young star

Between a rock and a hard place: can garnet planets be habitable

The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

WATER WORLD
Flying observatory makes observations of Jupiter previously only possible from space

York U research identifies icy ridges on Pluto

Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement