Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



EXO WORLDS
Kepler-223 System Offers Clues to Planetary Migration
by Staff Writers
Pasadena CA (JPL) May 20, 2016


Sean Mills (left) and Daniel Fabrycky (right), researchers at the University of Chicago, describe the complex orbital structure of the Kepler-223 system in a new study. Image courtesy Nancy Wong and University of Chicago. For a larger version of this image please go here.

The four planets of the Kepler-223 star system appeared to have little in common with the planets of our own solar system today. But a new study using data from NASA's Kepler space telescope suggests a possible commonality in the distant past. The Kepler-223 planets orbit their star in the same configuration that Jupiter, Saturn, Uranus and Neptune may have had in the early history of our solar system, before migrating to their current locations.

"Exactly how and where planets form is an outstanding question in planetary science," said the study's lead author, Sean Mills, a graduate student in astronomy and astrophysics at the University of Chicago in Illinois. "Our work essentially tests a model for planet formation for a type of planet we don't have in our solar system."

The puffy, gaseous planets orbiting Kepler-223, all of which are far more massive than Earth, orbit close to their star. "That's why there's a big debate about how they formed, how they got there and why don't we have an analogous planet in our solar system," Mills said.

Mills and his collaborators used data from Kepler - its mission is now known as K2 - to analyze how the four planets block their stars' light and change each other's orbits. This information also gave researchers the planets' sizes and masses. The team performed numerical simulations of planetary migration that generate this system's current architecture, similar to the migration suspected for the solar system's gas giants. These calculations are described in the May 11 Advance Online edition of Nature.

The orbital configuration of our own solar system seems to have evolved since its birth 4.6 billion years ago. The four known planets of the much older Kepler-223 system, however, have maintained a single orbital configuration for far longer.

Astronomers call the planets of Kepler-223 "sub-Neptunes." They likely consist of a solid core and an envelope of gas, and they orbit their star in periods ranging from only seven to 19 days. They are the most common type of planets known in the galaxy, even though there is nothing quite like them around our Sun.

Kepler-223's planets also are in resonance, meaning their gravitational influence on each other creates a periodic relationship between their orbits. Planets are in resonance when, for example, every time one of them orbits its sun once, the next one goes around twice. Three of Jupiter's largest moons, where the phenomenon was discovered, display resonances. Kepler-223 is the first time that four planets in an extrasolar system have been confirmed to be in resonance.

"This is the most extreme example of this phenomenon," said study co-author Daniel Fabrycky, an assistant professor of astronomy and astrophysics at the University of Chicago.

Formation Scenarios
The Kepler-223 system provides alternative scenarios for how planets form and migrate in a planetary system that is different from our own, said study co-author Howard Isaacson, a research astronomer at the University of California, Berkeley, and member of the California Planet Search Team.

"Data from Kepler and the Keck Telescope were absolutely critical in this regard," Isaacson said. Thanks to observations of Kepler-223 and other exoplanetary systems, "We now know of systems that are unlike our Sun's solar system, with hot Jupiters, planets closer than Mercury or in between the size of Earth and Neptune, none of which we see in our solar system. Other types of planets are very common."

Some stages of planet formation can involve violent processes. But during other stages, planets can evolve from gaseous disks in a smooth, gentle way, which is probably what the sub-Neptune planets of Kepler-223 did, Mills said.

"We think that two planets migrate through this disk, get stuck and then keep migrating together; find a third planet, get stuck, migrate together; find a fourth planet and get stuck," Mills explained.

That process differs completely from the one that scientists believe led to the formation of Mercury, Venus, Earth and Mars, which likely formed in their current orbital locations.

Earth formed from Mars-sized or moon-sized bodies smacking together, Mills said, in a violent and chaotic process. When planets form this way, their final orbital periods are not near a resonance.

Substantial Movement
But scientists suspect that the solar system's larger, more distant planets of today - Jupiter, Saturn, Uranus and Neptune - moved around substantially during their formation. They may have been knocked out of resonances that once resembled those of Kepler-223, possibly after interacting with numerous asteroids and small planets (planetesimals).

"These resonances are extremely fragile," Fabrycky said. "If bodies were flying around and hitting each other, then they would have dislodged the planets from the resonance." But Kepler-223's planets somehow managed to dodge this scattering of cosmic bodies.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Kepler and K2 missions
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO WORLDS
Exoplanets' Orbits Point to Planetary Migration
Chicago IL (SPX) May 16, 2016
The four planets of the Kepler-223 star system seem to have little in common with the planets of Earth's own solar system. And yet a new study shows that the Kepler-223 system is trapped in an orbital configuration that Jupiter, Saturn, Uranus, and Neptune may have broken from in the early history of the solar system. "Exactly how and where planets form is an outstanding question in planet ... read more


EXO WORLDS
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

EXO WORLDS
Ancient tsunami evidence on Mars reveals life potential

AAC Microtec to develop miniaturized motion controller for space rovers and robots

Hubble Takes Mars Portrait Near Close Approach

Mars - Closest, Biggest and Brightest in a Decade

EXO WORLDS
Airbus Defence and Space starts Orion service module assembly

Interns Make Archived NASA Planetary Science Data More Accessible

Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

NASA Invests in Next Stage of Visionary Technology Development

EXO WORLDS
China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

EXO WORLDS
Alexander Gerst to be Space Station commander

ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

NASA, Space Station partners announce future mission crew members

EXO WORLDS
Fregat is fueled in Arianespace's FCube facility for Soyuz Flight VS15

Russia Spent $1.3Bln on Vostochny Cosmodrome So Far

Pre-launch processing is underway with Indonesia's BRIsat for the next Arianespace heavy-lift flight

New Antares Rocket Rolls Out at NASA Wallops

EXO WORLDS
Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

Kepler space telescope finds another 1284 exo planets

EXO WORLDS
Debris Alert: A Crack in the Window

Lockheed, Indra conduct test of new radar system

Combining nanotextures with Leidenfrost effect for water repellency

Printing metal in midair




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement