. 24/7 Space News .
ENERGY TECH
Iron-gallium alloy shows promise as a power-generation device
by Staff Writers
Washington DC (SPX) Oct 02, 2015


This picture is of the experimental setup showing the Hopkinson bar surrounded by a water-cooled electromagnet. A cylinder of Galfenol is inside of the electromagnet, sandwiched between the Hopkinson bars. The magnet was used to apply a wide range of static magnetic fields to Galfenol while it was mechanically impacted. Image courtesy John Domann/UCLA. For a larger version of this image please go here.

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium.

In new experiments, researchers from UCLA, the University of North Texas (UNT), and the Air Force Research Laboratories have shown that Galfenol can generate as much as 80 megawatts of instantaneous power per square meter under strong impacts. The team describes the findings, which could lead to the development of wireless impact detectors and other applications, in a paper in the Journal of Applied Physics, by AIP Publishing.

Galfenol is a magnetoelastic material - one in which the state of magnetization can be changed by squeezing, pushing or otherwise deforming the material. Conversely, when exposed to a magnetic field, magnetoelastic materials respond by changing shape. If the materials are prevented from deforming - for example, by being held in a clamp - they instead will generate a large force.

"In general this means a magnetoelastic material can convert mechanical energy into magnetic energy, and vice versa," explained John P. Domann, a mechanical engineering graduate student at UCLA and first author of the paper. Galfenol converts energy with high efficiency; it is able to turn roughly 70 percent of an applied mechanical energy into magnetic energy, and vice versa. (A standard car, by contrast, converts only about 15 to 30 percent of the stored energy in gasoline into useful motion.)

Significantly, the magnetoelastic effect can be used to generate electricity. "If we wrap some wires around the material, we can generate an electrical current in the wire due to a change in magnetization," Domann said.

As described in the new paper, Domann and his colleagues - including his Ph.D. advisor, Gregory P. Carman, a professor of mechanical and aerospace engineering at UCLA, and Bradley E. Martin from the Air Force Research Laboratories at Eglin Air Force Base in Florida - assessed the power-generating ability of Galfenol in experiments using a device called a Split-Hopkinson Pressure Bar to generate high amounts of compressive stress (e.g., powerful impacts). They found that when subjected to impacts, Galfenol generates as much as 80 megawatts of instantaneous power per cubic meter.

By way of comparison, a device known as an explosively driven ferromagnetic pulse generator produces 500 megawatts of power per cubic meter. However, as their name implies, such generators require an explosion - one that destroys the ferromagnet, even as it produces power. "Destroying a material requires a lot of wasted energy, creating only one-shot devices," Domann said. "This wasteful energy and destruction is not a concern in our method using Galfenol, meaning our devices can be used repeatedly and cyclically."

Among the potential applications, Galfenol-powered devices could be used as wireless impact detectors. "Essentially, we could fabricate small devices that send out a detectable electromagnetic wave when a mechanical pulse moves through it," Domann said.

These devices could be embedded in vehicles - military or civilian - to detect collisions. Because electromagnetic waves travel three orders of magnitude faster than mechanical waves, information about the impact could be transmitted ahead of the waves created by the impact.

"In this manner, we could wirelessly determine that an impact has occurred, before the majority of the vehicle (or any passengers) even have time to feel it.

This would allow a fast computer to take actions mitigating damage or injury," he added.

Although the concept requires further analysis and testing, commercial technologies based on the idea could see the market within just a few years, the researchers said.

The article "High strain-rate magnetoelasticity in Galfenol," is authored by J.P. Domann, C.M. Loeffler, B.E. Martin and G. P. Carman. It will be published in the Journal of Applied Physics on September 29, 2015 (DOI: 10.1063/1.4930891). After that date, it can be accessed here.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
First optical rectenna converts light to DC current
Atlanta GA (SPX) Oct 01, 2015
Using nanometer-scale components, researchers have demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current. Based on multiwall carbon nanotubes and tiny rectifiers fabricated onto them, the optical rectennas could provide a new technology for photodetectors that would operate without the nee ... read more


ENERGY TECH
Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

ENERGY TECH
NASA unveils missing pieces in journey to Mars

Curiosity Rover Team Confirms Ancient Lakes on Mars

MRO imagery reveals Red Planet's stressed substrate

Geology Award Going to Mars Landing Site Expert at JPL

ENERGY TECH
NASA Tournament Lab to collaborate on human habitation in space

NASA Prepares to Test Orion Service Module

NASA announces Challenge for Methods of Assessing Damage to Space Suits

Selected NASA Discovery Missions Include Three With PSI Ties

ENERGY TECH
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

ENERGY TECH
Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Successful re-entry of H-II Transfer Vehicle Kounotori5

ENERGY TECH
Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

ENERGY TECH
Mysterious ripples found racing through planet-forming disc

The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

ENERGY TECH
More students earning statistics degrees - but not enough

3-D printing techniques help surgeons carve new ears

Caution: Shrinks when warm

Flipping molecular attachments amps up activity of CO2 catalyst









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.