. 24/7 Space News .
ENERGY TECH
Transition of copper-oxide compound studied in fine detail
by Staff Writers
Upton NY (SPX) Apr 12, 2016


Jie Wu, Anthony Bollinger, and Ivan Bozovic (left to right) loading a sample in an apparatus capable of reaching a temperature one-third of a degree above absolute zero. The film held by Bozovic was made from a compound containing lanthanum, strontium, copper, and oxygen, and was grown with a continuous variation of chemical composition from one side to the other. The electrical resistivity of the resulting samples, each with a slightly different chemical composition, can be measured simultaneously. Image courtesy Brookhaven National Laboratory. For a larger version of this image please go here.

Using a highly controlled deposition technique, scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have synthesized ultrathin films containing multiple samples of a copper-oxide compound to study the compound's electronic behavior at near absolute zero, or minus 459 degrees Fahrenheit.

This technique, as described in a paper published in this week's Online Early Edition of the Proceedings of the National Academy of Sciences, is helping scientists understand how electrons behave as this material transitions from being an insulator to a superconductor capable of carrying electric current with no resistance.

"We are trying to understand the mechanism of the insulator-superconductor transition in a family of compounds called the cuprates. These compounds become superconducting at relatively high temperatures - minus 200 degrees Fahrenheit - in comparison to most superconducting materials, which require temperatures within a few degrees of absolute zero," said Jie Wu, lead author on the paper and a physicist in Brookhaven Lab's Condensed Matter Physics and Materials Science Department.

"Characterizing this mechanism may provide insight into how we can make the superconducting temperature even higher, possibly even reaching room temperature."

This capability would enable electricity to be transferred much more efficiently. "Imagine a power line that carries electricity without any energy loss. We could wire the whole planet, resulting in trillions of dollars in savings and reduced environmental impact," said Wu.

Insulator-superconductor transition
In their native state, cuprates are insulators; they do not readily conduct electricity. But cuprates can become superconducting when chemically "doped" with strontium atoms, which produce free-moving electrons that pair up in the crystalline copper-oxide layers where superconductivity is known to occur.

At a certain reduced doping level, however, superconductivity weakens and eventually disappears. As the cuprates' superconducting temperature is lowered to near absolute zero, resistance increases somewhat (a characteristic of insulators) yet conductivity remains quite high (a characteristic of metals). The nature of this strange "insulating" state has been a puzzle to scientists for years.

Solving the puzzle requires a method of fine-tuning the doping level to incrementally approach the quantum critical point - the "tipping" point at which a material is on the cusp of transitioning from one state of electronic order to another, similar to the phase change that happens when ice melts into liquid water. It also requires a highly sensitive way to measure the electronic changes corresponding with the different doping levels.

One film, many samples
To study the insulator-superconductor transition in fine detail, the scientists synthesized films of a compound containing lanthanum, strontium, copper, and oxygen. They used a combinatorial molecular beam epitaxy system at Brookhaven that places materials onto a substrate, atom by atom, in a layered manner and at tightly controlled deposition rates.

Through photolithography, a technique of transferring a geometric pattern onto a substrate, the scientists patterned single-crystal films into a linear "combinatorial" library containing 30 samples, each with a slightly different chemical doping level near the quantum critical point. To provide the electrical contact needed to measure the resistivity of the samples, they evaporated gold pads onto the films' surface.

"We programmed the system to vary the doping level continuously and very precisely at a set minute increment," said Ivan Bozovic, co-author on the paper and a senior physicist in Brookhaven's Condensed Matter Physics and Materials Science Department.

The scientists then measured the electrical resistivity of the samples with varying temperatures, magnetic fields, and doping levels near the quantum critical point. Two types of measurements were taken: one parallel to the electrical current (longitudinal resistivity) and one perpendicular (Hall resistivity).

"The Hall resistivity is much more sensitive because it measures the voltage at a particular cross section of the sample. Longitudinal resistivity averages the whole section," said Wu. "Our Brookhaven team is the first to use this more localized approach that can give us a direct measurement of the density of mobile electrons."

Key findings
At a fixed low temperature, decreasing the doping level or increasing the applied magnetic field both suppressed superconductivity, allowing a competing state of electronic order to take over. Dramatic fluctuations appeared in the Hall resistance below a critical temperature, and these fluctuations increased in frequency and magnitude as all samples were further cooled toward absolute zero, indicating that they are of quantum origin.

"The behavior of these fluctuations is opposite to that seen in fluctuations driven by thermal energy, such as the vapor bubbles that appear when water is boiled," said Wu. "The bubbles fade away as the temperature is lowered."

The Hall resistivity measurements compared over the entire range of magnetic fields tested revealed that the samples have "memory" of their prior electronic states. After a magnetic field was applied, the value and sign of the Hall resistivity changed.

When the magnetic field was removed, the samples stayed in the same electronic configuration until the field was reapplied - a very unusual property for conductors.

The scientists' data reveal that, at near-absolute-zero temperatures, the superconducting state competes with another state of electronic order characterized by the random distribution of many small charge "clusters," or localized groups of electrons.

Unlike the free-flowing electrons in metals and superconductors, the electrons in these clusters are localized and pinned to particular atoms, rendering them immobile and unable to carry current when an electric field is applied. The clusters can hop around and trade places in the lattice as a result of quantum fluctuations.

"This picture explains the weak conductivity of this strange "insulating" state, revealing that the state originates from localization of charges," said Wu.

"Our conclusion builds upon our understanding of the insulator-superconductor transition in an important class of high-temperature superconductors. We are one step closer toward our goal of predicting and designing new superconducting materials with superior properties for energy applications."

Research paper: Hall effect in quantum critical charge-cluster glass


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brookhaven National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Cost-effective production of hydrogen from natural resources
Ulsan, South Korea (SPX) Apr 11, 2016
Owing to their unbeatable electro-optical properties and compatibility with existing silicon technology, silicon nanosheets (SiNSs) are one of most exciting recent discoveries. They have been the most promising candidate for use in various applications, such as in the process of manufacturing semiconductors and producing hydrogen. A joint research team, led by Prof. Jae Sung Lee and Prof. ... read more


ENERGY TECH
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

ENERGY TECH
Scientists find Mars surface replica in India

Scientists study gypsum to better understand water on Mars

Rover takes on steepest slope ever tried on Mars

Martian winds slowly build enormous mounds over billions of years

ENERGY TECH
Spanish port becomes global 'smart city' laboratory

Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

ENERGY TECH
Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

ENERGY TECH
Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

ENERGY TECH
NASA Progresses Toward SpaceX Resupply Mission to Space Station

SpaceX lands rocket on water platform for first time

SpaceX to launch first cargo since 2015 accident

Water System Tested on Crew Access Arm at KSC

ENERGY TECH
Planet formation in Earth-like orbit around a young star

NASA's Spitzer Maps Climate Patterns on a Super-Earth

'Smoothed' light will help search for Earth's twins

Map of rocky exoplanet reveals a lava world

ENERGY TECH
Artificial molecules

'Self-healing' plastic could mean better bandages, tougher phone cases

New understanding of liquid to solid state transition discovered

New metallic glass bounces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.