Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CHIP TECH
In Neptune, it's raining diamonds
by Staff Writers
Dresden, Germany (SPX) Aug 22, 2017


By conducting experiments at the Linac Coherent Light Source - one of the world's most powerful X-ray lasers - an international team of researchers led by HZDR physicist Dr. Dominik Kraus was able to demonstrate that hydrocarbon compounds split into carbon and hydrogen inside ice giants such as Neptune, shown here. The carbon turns into a "diamond shower." Credit Greg Stewart / SLAC National Accelerator Laboratory

In cooperation with colleagues from Germany and the United States, researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have managed to demonstrate 'diamond showers' forming in the ice giants of our solar system. Using the ultra-strong X-ray laser and other facilities at the Stanford Linear Accelerator Center (SLAC) in California, they simulated the conditions inside the cosmic giants.

For the first time ever, they were able to observe the fission of hydrocarbon and the conversion of carbon into diamonds in real time.

The interior of planets like Neptune or Uranus consists of a solid core swathed in thick layers of "ice", which is mostly made up of hydrocarbons, water and ammonia. For a long time, astrophysicists have been speculating that the extreme pressure that reigns more than 10,000 kilometers beneath the surface of these planets splits the hydrocarbons causing diamonds to form, which then sink deeper into the planet's interior.

"So far, no one has been able to directly observe these sparkling showers in an experimental setting," says Dr. Dominik Kraus, who is the head of a Helmholtz Junior Research Group at HZDR.

That was precisely the breakthrough Kraus and his international team have now achieved: "In our experiment, we exposed a special kind of plastic - polystyrene, which also consists of a mix of carbon and hydrogen - to conditions similar to those inside Neptune or Uranus."

Shock waves charging through the sample
They did this by driving two shock waves through the samples, triggered by an extremely powerful optical laser in combination with the X-ray source Linac Coherent Light Source (LCLS) at SLAC. At a pressure of about 150 gigapascal and temperatures of about 5,000 degrees Celsius, they compressed the plastic.

"The first smaller, slower wave is overtaken by another stronger second wave," Dominik Kraus explains.

"Most diamonds form the moment both waves overlap." And since this process takes only a fraction of a second, the researchers used ultrafast X-ray diffraction to take snapshots of the diamonds' creation and the chemical processes involved. "Our experiments show that nearly all the carbon atoms compact into nanometer-sized diamonds," the Dresden researcher summarizes.

Based on these results, the authors of the study assume that the diamonds on Neptune and Uranus are much larger structures and likely sink down to the planet core over a period of thousands of years. "Our experiments are also providing us with better insights into the structure of exoplanets," Kraus anticipates.

Researchers can measure two main metrics in these cosmic giants outside of our solar system: The first one is mass, based on positional changes of the mother star; and the other is its radius, derived from the shadow that is cast as the planet passes a star. The relation between these two metrics offers clues about the planet's chemical make-up, for instance, whether it consists of light or heavy elements.

"And, for their part, these chemical processes inside the planet tell us something about its vital properties," Dominik Kraus continues.

"This allows us to improve planetary models. As our studies show, previous simulations have not been accurate." In addition to astrophysical insights, these experiments also hold potential for practical application.

The nano-diamonds created in the experiments can be used in electronic instruments, medical procedures, or as cutting materials in industrial production. Current production of such diamonds is mainly done by blasting. Laser-based production could mean a cleaner and more controllable process.

The researchers from HZDR and SLAC were joined by scientists from the University of California in Berkeley, the Lawrence Livermore National Laboratory, the Lawrence Berkeley National Laboratory, the GSI Helmholtzzentrum fur Schwerionenforschung, the University of Osaka, TU Darmstadt, the European XFEL, the University of Michigan, and the University of Warwick. They published their results in the journal Nature Astronomy (DOI: 10.1038/s41550-017-0219).

Research Report: Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions

SPACEMART
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies
Tokyo, Japan (SPX) Jul 18, 2017
ASTROSCALE completed a Series C round and raised $53 million in total to date. Private companies, ANA Holdings Inc. (ANA - parent company of ALL NIPPON AIRWAYS Co., Ltd.) and OSG Corporation, join recurring venture capital investors (Innovation Network Corporation of Japan, JAFCO Co., Ltd., and Mitsubishi UFJ Capital) alongside new financier aSTART Co., Ltd. The successful completion of Se ... read more

Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACEMART
System tests prepare Orion for deep space exploration

An era of continuous space communications of with TDRS

NASA launches latest TDRS communications satellite

NASA: let's say something to Voyager 1 on 40th anniversary of launch

SPACEMART
Equipment for Angara heavy-class rocket arrives at Vostochny Cosmodrome

SHIIVER tank arrives at NASA's Marshall Center for spray-on foam insulation

'Dragon captured' as cargo arrives at space station

SpaceX launches super-computer to space station

SPACEMART
Mars 2020 mission to use smart methods to seek signs of past life

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

SPACEMART
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

SPACEMART
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

SPACEMART
Archinaut Project conducts first large-scale 3D build in space-like environment

Cosmonauts launch 3D-printed satellite from space station

NASA protects its super heroes from space weather

Surprise discovery in the search for energy efficient information storage

SPACEMART
Tidally locked exoplanets may be more common than previously thought

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

SPACEMART
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement